Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Kim Trúc
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 22:12

\(y=2-2.\left(2sinx.cosx\right)=2-2sin2x\)

Do \(-1\le sin2x\le1\Rightarrow0\le y\le4\)

\(y_{min}=0\) khi \(sin2x=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)

\(y_{max}=4\) khi \(sin2x=-1\Rightarrow x=-\dfrac{\pi}{4}+k\pi\)

Phạm Thị Kim Trúc
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 22:13

\(y=2\left(1-cos2x\right)-cos2x=2-3cos2x\)

Do \(-1\le cos2x\le1\Rightarrow-1\le y\le5\)

\(y_{min}=-1\) khi \(cos2x=1\Leftrightarrow x=k\pi\)

\(y_{max}=5\) khi \(cos2x=-1\Rightarrow x=\dfrac{\pi}{2}+k\pi\)

Phạm Thị Kim Trúc
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 22:11

ĐKXĐ: \(cos2x\ge0\Rightarrow0\le cos2x\le1\)

\(\Rightarrow3.0+1\le y\le3.\sqrt{1}+1\)

\(\Rightarrow1\le y\le4\)

\(y_{min}=1\) khi \(cos2x=0\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

\(y_{max}=4\) khi \(cos2x=1\Rightarrow x=k\pi\)

Nguyễn Việt Lâm
14 tháng 9 2021 lúc 22:15

Do \(0\le cos^2x\le1\Rightarrow\dfrac{1}{2}\le y\le2\)

\(y_{min}=\dfrac{1}{2}\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)

\(y_{max}=2\) khi \(cos^2x=1\Rightarrow sinx=0\Rightarrow x=k\pi\)

nguyễn thanh hoa
Xem chi tiết
Lưu Hiền
27 tháng 9 2016 lúc 19:12

tình GTNN hay GTLN đều áp dụng hằng đẳng thức cơ bản và nâng cao, nếu học thoe lớp chuyên thì áp dụng cả những thứ trên trời dưới đất, trong ao ngoài hồ cũng có (vì mình học theo lớp đó) nhưng có thể phân biệt như sau

GTNN xảy ra khi có 1 số mũ chẵn + 1 số nào đó thì GTNN sẽ bằng số đó (VD tông quát là a2n+k(trong đó a có thể là 1 biểu thức, k là số bất kỳ)

GTLN xảy ra khi 1 số mũ lẻ + 1 số nào đó thì số mũ lẻ ấy phải = 0 để GTLN đạt được là cái số ko có biến đó (VD tổng quát a2n+1+k(trong đó a có thể  là 1 biểu thức)

hơi khó hiểu nhỉ, ko hiểu chỗ nào cứ hỏi

Bùi Hà Chi
26 tháng 9 2016 lúc 22:33

Ôi mẹ ơi con sốc quá batngooe

Ninh Tokitori
26 tháng 9 2016 lúc 22:47

hờ hờ

Kim anh
Xem chi tiết
Hà Mi
Xem chi tiết
Lê Nguyên Lâm
Xem chi tiết
Akai Haruma
8 tháng 3 2023 lúc 11:34

Lời giải:
$x^4\geq 0$ với mọi $x$

$\Rightarrow x^4+1\geq 1$

$\Rightarrow (x^4+1)^2\geq 1$

$\Rightarrow (x^4+1)^2+2021\geq 1+2021=2022$

Vậy GTNN của biểu thức là $2022$. Giá trị này đạt tại $x=0$

Phạm Phương Linh
Xem chi tiết