Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Nguyệt
Xem chi tiết
Nguyễn Thị Hoàng Nhi
22 tháng 5 2021 lúc 7:40

cảm ơn mọi người nhìu nha!!!

Khách vãng lai đã xóa
phương thảo nguyễn
Xem chi tiết
Nhật Văn
5 tháng 8 2023 lúc 17:58

a) \(2^x=8\)

⇔ \(2^x=2^3\)

⇒ \(x=3\)

b) \(3^x=27\)

⇔ \(3^x=3^3\)

⇒ \(x=3\)

c) \(\left(-\dfrac{1}{2}\right)x=\left(-\dfrac{1}{2}\right)^4\)

⇔ \(x=\left(-\dfrac{1}{2}\right)^4\div\left(-\dfrac{1}{2}\right)\)

⇔ \(x=\left(-\dfrac{1}{2}\right)^3\)

d) \(x\div\left(-\dfrac{3}{4}\right)=\left(-\dfrac{3}{4}\right)^2\)

⇔ \(x=\left(-\dfrac{3}{4}\right)^2\cdot\left(-\dfrac{3}{4}\right)\)

⇔ \(x=\left(-\dfrac{3}{4}\right)^3=-\dfrac{27}{64}\)

d) \(\left(x+1\right)^3=-125\)

⇔ \(\left(x+1\right)^3=\left(-5\right)^3\)

⇔ \(x+1=-5\)

⇔ \(x=-5-1=-6\)

Nguyễn Lê Phước Thịnh
5 tháng 8 2023 lúc 18:05

2:

a: (x-1,2)^2=4

=>x-1,2=2 hoặc x-1,2=-2

=>x=3,2(loại) hoặc x=-0,8(loại)

b: (x-1,5)^2=9

=>x-1,5=3 hoặc x-1,5=-3

=>x=-1,5(loại) hoặc x=4,5(loại)

c: (x-2)^3=64

=>(x-2)^3=4^3

=>x-2=4

=>x=6(nhận)

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 11 2021 lúc 14:45

\(1,\)

\(\left(x+2\right)^2\ge0;\left(y-4\right)^2\ge0;\left(2y-4\right)^2\ge0\\ \Leftrightarrow\left(x+2\right)^2+\left(y-4\right)^2+\left(2y-4\right)^2\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\\y=2\end{matrix}\right.\left(vô.lí\right)\)

Do đó PT vô nghiệm

\(2,\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

 

Nguyen Minh Hieu
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 7 2021 lúc 7:21

\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pm1\)

Hà Thu
Xem chi tiết
Toru
3 tháng 12 2023 lúc 9:54

$(x^2-2)^2+4(x-1)^2-4(x^2-2)(x-1)=0$

$\Leftrightarrow(x^2-2)^2-4(x^2-2)(x-1)+4(x-1)^2=0$

$\Leftrightarrow(x^2-2)^2-2\cdot(x^2-2)\cdot2(x-1)+[2(x-1)]^2=0$

$\Leftrightarrow[(x^2-2)-2(x-1)]^2=0$

$\Leftrightarrow(x^2-2-2x+2)^2=0$

$\Leftrightarrow(x^2-2x)^2=0$

$\Leftrightarrow x^2-2x=0$

$\Leftrightarrow x(x-2)=0$

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: $x\in\{0;2\}$.

Nguyen Thi Ngoc Ha
Xem chi tiết
nguyễn ngọc minh hà
Xem chi tiết
Nguyễn Trần Nhật Hoàng
Xem chi tiết
tranphuonggiao
Xem chi tiết
tranphuonggiao
16 tháng 10 2017 lúc 20:38

Trả lời giúp mình câu này

Hoài anh Pham
Xem chi tiết
Đinh Minh Đức
23 tháng 3 2022 lúc 12:36

sai đề bài nhé bạn