Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguễn Hoàng Dương
Xem chi tiết
nguyễn thị hiền
Xem chi tiết
Vũ Thị Minh Khuê
Xem chi tiết
Zz Victor_Quỳnh_Lê zZ
18 tháng 1 2016 lúc 18:02

kho that day!!!!!!!!!!!!!!!!!

Vũ Thị Minh Khuê
18 tháng 1 2016 lúc 18:19

khó thì nói lm j hả cái bác các thím

Phạm Nhật Anh
Xem chi tiết
Chúa Tể Bầu Trời
30 tháng 1 2016 lúc 15:55

 a+b=c+d => a=c+d-b 
thay vào ab+1=cd 
=> (c+d-b)*b+1=cd 
<=> cb+db-cd+1-b^2=0 
<=> b(c-b)-d(c-b)+1=0 
<=> (b-d)(c-b)=-1 
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
mà (b-d)(c-b)=-1 nên có 2 TH: 
TH1: b-d=-1 và c-b=1 
<=> d=b+1 và c=b+1 
=> c=d 
TH2: b-d=1 và c-b=-1 
<=> d=b-1 và c=b-1 
=> c=d 
Vậy từ 2 TH ta có c=d.

Võ Thạch Đức Tín 1
30 tháng 1 2016 lúc 15:57

Đặt (a;c)=q thì a=qa1;c=qc1 (Vs (a1;c1=1)
Suy ra ab=cd ⇔ba1=dc1
Dẫn đến d⋮a1 đặt d=a1d1 thay vào đc:
b=d1c1
Vậy an+bn+cn+dn=q2an1+dn1cn1+qncn1+an1dn1=(cn1+an1)(dn1+qn)
là hợp số (QED) 

OoO Kún Chảnh OoO
30 tháng 1 2016 lúc 16:10

=> a=c+d-b 
thay vào ab+1=cd 
=> (c+d-b)*b+1=cd 
<=> cb+db-cd+1-b^2=0 
<=> b(c-b)-d(c-b)+1=0 
<=> (b-d)(c-b)=-1 
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
mà (b-d)(c-b)=-1 nên có 2 TH: 
TH1: b-d=-1 và c-b=1 
<=> d=b+1 và c=b+1 
=> c=d 
TH2: b-d=1 và c-b=-1 
<=> d=b-1 và c=b-1 
=> c=d 
Vậy từ 2 TH ta có c=d.

Nguyễn Đức Thắng
Xem chi tiết
ho dang khai
Xem chi tiết
Nguyễn Phương Ngân
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 10 2021 lúc 19:45

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\\ \dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\dfrac{b^2}{d^2}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Vũ Bảo Vinh
Xem chi tiết
titanic
Xem chi tiết
Thắng Nguyễn
3 tháng 12 2016 lúc 12:02

Đặt \(\frac{a}{b}=\frac{c}{d}=k\), suy ra \(a=bk;c=dk\)

\(VT=\frac{2b^2k^2-3b^2k+3b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+3\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(1\right)\)

\(VP=\frac{2d^2k^2-3d^2k+3d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+3\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(2\right)\)

Từ (1) và (2) suy ra ĐPcm