Lời giải:
Ta có:
\((ab+cd)^2=a^2b^2+c^2d^2+2abcd\)
\(=a^2b^2+c^2d^2-2abcd+4abcd\)
\(=(ab-cd)^2+4abcd\geq 4abcd=4\)
Vậy \((ab+cd)^2\geq 4\)
\(\Rightarrow ab+cd\geq \sqrt{4}=2\) (với \(ab+cd>0\))
Vậy......
Lời giải:
Ta có:
\((ab+cd)^2=a^2b^2+c^2d^2+2abcd\)
\(=a^2b^2+c^2d^2-2abcd+4abcd\)
\(=(ab-cd)^2+4abcd\geq 4abcd=4\)
Vậy \((ab+cd)^2\geq 4\)
\(\Rightarrow ab+cd\geq \sqrt{4}=2\) (với \(ab+cd>0\))
Vậy......
chứng minh tỉ lệ thức
\(\dfrac{a.b}{c.d}\)=\(\dfrac{a^2-b^2}{c^2-d^2}\)
Bài 1: Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng \(\frac{a.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\)
Bài 2: Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)
a) \(\frac{5a+3b}{5a-3b}=\frac{5a+3b}{5a-3b}\)
b) \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
CMR \(\dfrac{a.b}{c.d}=\dfrac{a^2-b^2}{c^2-d^2}\)
cho \(\dfrac{b}{a}=\dfrac{c}{d}\)cmr:
a,\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
b,\(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
c,\(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
d,\(\dfrac{ac}{bd}=\dfrac{a^2+b^2}{b^2+d^2}\)
e,\(\dfrac{a.b}{c.d}=\dfrac{a^2-b^2}{c^2-d^2}\)
f,\(\dfrac{a.b}{c.d}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
CMR: \(\dfrac{a}{b}=\dfrac{c}{d}\)thì \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a.b}{c.d}\)
Các bạn ơi giúp mình mấy bài toán này giùm nha:
1/ Cho a/b = c/d. Chứng minh rằng:
a) ab/cd = a^2 +b^2/c^2+d^2
b)ac/bd = a^2+c^2/b^2+d^2
c) 7a^2+3ab/11a^2-8b^2 =7c^2+3cd/11c^2-8d^2
2/ Cho 4 số a.b.c.d thỏa mãn b^2=ac;c^2=bd
Chứng minh: a^3+b^3+c^3/b^3+c^3+d^3=a/d
cho 3 số dương 0 <hoặc bằng a<hoặc bằng b<hoặc bằng c<hoặc bằng 1 chứng minh rằng a/bc+1+b/ac+1+c/ab+1<hoặc bằng 2
Bài 1 : Cho \(a^2\)=b.c , \(c^2\)=a.b(a,b,c>0)
Tính giá trị biểu thức
c=\(\frac{a-b}{2019}\)+\(\frac{b^2-c^2}{2020}\)
Bài 2:Cho \(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{a}\)
Tính M=\(\frac{\left(a+b\right).\left(b+c\right).\left(c+a\right).\left(a+d\right)}{a.b.c.d}\)
cho \(\frac{a}{b}=\frac{c}{d}\)chung minh rang:
\(\frac{a}{a-b}=\frac{c}{c-d}\) \(\frac{a}{b}=\frac{a+c}{b+d}\) \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(\frac{a.b}{c.d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) \(\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+d^2}\)\(\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}\)