cho \(\dfrac{b}{a}=\dfrac{c}{d}\)cmr:
a,\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
b,\(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
c,\(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
d,\(\dfrac{ac}{bd}=\dfrac{a^2+b^2}{b^2+d^2}\)
e,\(\dfrac{a.b}{c.d}=\dfrac{a^2-b^2}{c^2-d^2}\)
f,\(\dfrac{a.b}{c.d}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
a: a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}=\dfrac{a}{a-b}\)
b: \(\dfrac{a}{b}=\dfrac{bk}{b}=k\)
\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k=\dfrac{a}{b}\)
c \(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)
\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}=\dfrac{a}{3a+b}\)
d: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2=\dfrac{ac}{bd}\)