Chứng minh rằng nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì
a, \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5a-3d}\)
b, \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:
a) \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
b) \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Help meeee!!!
1 cho \(\frac{a}{c}=\frac{b}{d}\)
Chứng minh
a) \(\frac{2a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
b) \(\frac{5c^2+3ab}{7c^2+3cd}=\frac{7a^2+3cd}{11c^2+8d^2}\)
2 . \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) CM
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
3. a=b+c và \(c=\frac{db}{bd}\) CM
\(\frac{a}{b}=\frac{c}{d}\)
4 cho x,y,z>0
tính A= \(\frac{x}{y}\) biết \(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}\)
Cho \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng : \(\frac{5a+3b}{5a-3b}\) \(=\frac{5c+3d}{5c-3d}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) Chứng minh rằng: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Bài 4: Chứng minh rằng:
Nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì:
a) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
b)\(\dfrac{7a^2+3ab}{11b^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Các bạn giúp mềnh nha, mai mềnh đi học òy, rồi mềnh tick cho
Thank các bạn
cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . CMR :
a, \(\dfrac{5a+3b}{7a-2b}=\dfrac{5c+3d}{7c-2d}\)
b, \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
c, \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
( giả thiết các tỉ số trên đều có nghĩa )
CMR: Nếu \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) thì \(\frac{a}{b}=\frac{c}{d}\)
Bài 1: Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)
b) \(\frac{a^2}{b^2}=\frac{a^2-ac}{b^2-bd}\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). Chứng minh: \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)