Ta có:
\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a) \(\frac{5a+3b}{5c+3d}=\frac{5.bk+3b}{5.dk+3d}=\frac{b\left(5k+3\right)}{d\left(5k+3\right)}=\frac{b}{d}\)
\(\frac{5a-3b}{5c-3d}=\frac{5.bk-3b}{5.dk-3d}=\frac{b\left(5k-3\right)}{d\left(5k-3\right)}=\frac{b}{d}\)
\(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\left(đpcm\right)\)
b) \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)