Cho tam giác đều ABC cạnh 5 cm, điểm D thuộc tia đối của BC sao cho góc ADB=40 độ. Tính AD, BD
Cho tam giác ABC đều cạnh 5 cm. Trên tia đối của tia BC lấy điểm D sao cho góc ADB=\(40^o\) .Tính:
a) Độ dài đoạn AD.
b) Độ dài đoạn DB.
a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
nên \(\widehat{ABD}=120^0\)
Xét ΔABD có
\(\widehat{ABD}+\widehat{BAD}+\widehat{ADB}=180^0\)(Định lí tổng ba góc trong một tam giác)
hay \(\widehat{BAD}=20^0\)
Xét ΔABD có
\(\dfrac{AB}{\sin\widehat{D}}=\dfrac{DB}{\sin\widehat{BAD}}=\dfrac{AD}{\sin\widehat{ABD}}\)
\(\Leftrightarrow\dfrac{DB}{\sin20^0}=\dfrac{AD}{\sin120^0}=\dfrac{5}{\sin40^0}\)
Suy ra: \(\left\{{}\begin{matrix}DB\simeq2,66\left(cm\right)\\AD\simeq6,74\left(cm\right)\end{matrix}\right.\)
1,Cho tam giác ABC có AB < AC,AD là phân giác của góc A ( D thuộc BC ).Trên cạnh AC lấy điểm E sao cho AE = AB
a,CM:CD > BD
b,So sánh góc ADB và góc ADC
2,Cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm D.Trên tia đối của tia CA lấy điểm E sao cho BD = CE.Nối D với E.Kẻ DH vuông góc với BC ( H thuộc BC ),EK vuông góc với BC ( K thuộc BC ).CM:
a,BH = CK
b,BC < DE
1:
a: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB<AC
nên BD<CD
b: AB<AC
=>góc B>góc C
góc ADB=góc C+góc CAD
góc ADC=góc B+góc BAD
mà góc C<góc B và góc CAD=góc BAD
nên góc ADB<góc ADC
Cho ∆ABC đều có cạnh 5cm ; đường cao AH. Trên tia đối của BC lấy điểm D sao cho góc ADB = 40° . Tính AD ; DB
Bài 1: Cho tam giác ABC đều. Trên tia đối tia BC lấy điểm D, trên tia đối tia CB lấy điểm E sao cho BD=CE=BC
a) C/m: tam giác ACE cân
b) Tính góc DAE
Bài 2: Cho tam giác ABC cân tại A. Trên tia đối tia AC lấy điểm D sao cho AD = AC. C/m tam giác BCD vuông
Bài 3: Cho tam giác ABC cân tại A có góc A= 40 độ. Lấy điểm D khác phía B so với AC thoả mãn góc CAD=60 độ, góc ACD=80 độ. C/m BD vuông góc AC
Cho tam giác DBC đều cạnh 5 cm . Trên tia đối của tia BC lấy điểm A sao cho DAB = 40 độ . Tính AD , AB
Bài 1: Cho hình thang cân ABCD có AB // CD, AB = 4 cm, CD = 10 cm, AD = 5 cm. Trên tia đối của tia BD lấy điểm E sao cho BE = BD. Gọi H là chân đường vuông góc kẻ từ E đến BC. Tính độ dài CH
Bài 2: Cho tam giác ABC điểm D thuộc tia đối của tia BA sao cho BE = BA, M là trung điểm của BC, K là giao điểm của DM và AC. Chứng minh rằng AK = 2KC
Bài 3: Cho tam giác ABC, gọi M,N,P lần lượt là trung điểm của AB, AC, BC. Tính cho tam giác MNP, biết cạnh AB = 8 cm, AC = 10cm, BC = 12 cm
Giúp mình nhé, cảm ơn !
Cho tam giác ABC đều cạnh 5cm. Trên tia đối của tia BC lấy điểm D sao cho \(\widehat{ADB}=40^o\). Tính:
a) Độ dài đoạn AD.
b) Độ dài đoạn DB.
Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{ABD}+60^0=180^0\)
hay \(\widehat{ABD}=120^0\)
\(\Leftrightarrow\widehat{DAB}=180^0-120^0-40^0=20^0\)
Xét ΔABD có
\(\dfrac{AB}{\sin40^0}=\dfrac{AD}{\sin120^0}=\dfrac{BD}{\sin20^0}\)
\(\Leftrightarrow\left\{{}\begin{matrix}AD\simeq6,74\left(cm\right)\\BD\simeq2,66\left(cm\right)\end{matrix}\right.\)
Câu 1:Cho tam giác ABC cân tại A, góc A=120 độ, BC=6 cm. Đường vuông góc với AB tại A cắt BC ở D. Trên tia đối của tia AD lấy K sao cho AD=Ak. Tính BD
Câu 2:Cho tam giác ABC vuông tại A có góc B= 30 độ. Trên tia đối của tia AC lấy D sao cho AD=AC.
a) CM: tam giác ABD= tam giác ABC
b) tam giác BCD là tam giác đều