Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{ABD}+60^0=180^0\)
hay \(\widehat{ABD}=120^0\)
\(\Leftrightarrow\widehat{DAB}=180^0-120^0-40^0=20^0\)
Xét ΔABD có
\(\dfrac{AB}{\sin40^0}=\dfrac{AD}{\sin120^0}=\dfrac{BD}{\sin20^0}\)
\(\Leftrightarrow\left\{{}\begin{matrix}AD\simeq6,74\left(cm\right)\\BD\simeq2,66\left(cm\right)\end{matrix}\right.\)