O là trung điểm AB \(\Rightarrow OA=OB=\dfrac{AB}{2}=a\)
Áp dụng định lý Pitago:
\(AD=\sqrt{AO^2+OD^2}=\dfrac{a\sqrt{5}}{2}\)
Xét hai tam giác vuông AOD và ACB có góc A chung
\(\Rightarrow\Delta AOD\sim\Delta ACB\Rightarrow\dfrac{AD}{AB}=\dfrac{AO}{AC}\Rightarrow AC=\dfrac{AO.AB}{AD}=\dfrac{4a\sqrt{5}}{5}\)
\(BC=\sqrt{AB^2-AC^2}=\dfrac{2a\sqrt{5}}{5}\)
b. Ta có: \(AE=\sqrt{AO^2+OE^2}=a\sqrt{2}\)
\(BE=\sqrt{OB^2+OE^2}=a\sqrt{2}\)
\(\Rightarrow AE^2+BE^2=4a^2=AB^2\)
\(\Rightarrow\Delta ABE\) vuông tại E (Pitago đảo)
\(\Rightarrow\) Hai điểm E và C cùng nhìn AB dưới 1 góc vuông nên bốn điểm A,B,C,E cùng thuộc đường tròn đường kính AB (đpcm)