Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Diệp
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2023 lúc 12:12

A+B

=a+b-5+b-c-9

=a+2b-c-14

C+D

=b-c-4-b+a

=-c+a-4

=>A+B<>C+D nha bạn

Trương Phát
Xem chi tiết
Blue Frost
Xem chi tiết
Thanh Tùng DZ
16 tháng 5 2020 lúc 17:49

BĐT tương đương với :

\(3a^4+3b^4+3c^4-\left(a^4+a^3b+a^3c+b^4+ab^3+b^3c+ac^3+bc^3+c^4\right)\ge0\)

\(\Leftrightarrow\left(a^4+b^4-a^3b-ab^3\right)+\left(b^4+c^4-b^3c-bc^3\right)+\left(a^4+c^4-a^3c-ac^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)+\left(b-c\right)^2\left(b^2+bc+c^2\right)+\left(a-c\right)^2\left(a^2+ac+c^2\right)\ge0\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
28 tháng 5 2020 lúc 10:43

BĐT cần chứng minh tương đương với:

\(3a^4+3b^4+3c^4\ge a^4+b^4+c^4+ab^3+bc^3+ca^3+a^3b+b^3c+c^3a\)

\(\Leftrightarrow2a^4+2b^4+2c^4-ab^3-bc^3-ca^3-a^3b-b^3c-c^3a\ge0\)

Theo AM - GM ta dễ có:

\(a^4+a^4+a^4+b^4\ge4\sqrt[4]{a^{12}b^4}=4a^3b\)

\(b^4+b^4+b^4+c^4\ge4\sqrt[4]{b^{12}c^4}=4b^3c\)

\(c^4+c^4+c^4+a^4\ge4\sqrt[4]{c^{12}a^4}=4c^3a\)

Cộng vế theo vế ta có đpcm

Khách vãng lai đã xóa
Phạm Thuý An
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 9 2021 lúc 8:48

\(1,\\ a,X=\left\{3;4\right\};\left\{2;3;4\right\};\left\{1;2;3;4\right\}\\ b,X=\left\{2;4\right\}\\ X=\left\{2\right\}\\ X=\left\{4\right\}\\ X=\varnothing\)

\(2,\\ a,A=\left\{-3;-2;0;1;2;3;4\right\}\\ B=\left\{0;1;2;3;4;6;9;10\right\}\\ b,A=\left\{1;2;3;4;5\right\}\\ B=\left\{1;2;3;6;9\right\}\)

 

Vũ Anh Dũng
Xem chi tiết
zZz Cool Kid_new zZz
16 tháng 4 2020 lúc 18:23

Bạn tham khảo các câu trả lời của mọi người tại đây:

Câu hỏi của zZz Cool Kid zZz - Toán lớp 8 - Học toán với OnlineMath

Và đây củng chính là Moldova TST 2005

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
16 tháng 4 2020 lúc 18:34

Một cách giải khác mình lấy được trên mạng

Khách vãng lai đã xóa
buiphutrong
Xem chi tiết
Nguyễn Trung Nguyên
Xem chi tiết
Nguyễn Trung Nguyên
10 tháng 10 2021 lúc 18:00

TC: a/b=b/c

=>

nguyễn thu trang
Xem chi tiết
Nguyễn Đức Tiến
7 tháng 1 2016 lúc 8:55

Áp dụng t/c của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Xét a/b+c và c/a+b có:

  \(\frac{a}{b+c}=\frac{1}{2}\Rightarrow b+c=2a\)

  \(\frac{b}{c+a}=\frac{1}{2}\Rightarrow a+c=2b\)  

   \(\Leftrightarrow a+c-b+c=2b-2a\) \(\Leftrightarrow a-b=2b-2a\Leftrightarrow a=2b-2a+b=3b-2a\)                                      \(\Leftrightarrow3c-2a-a=0\Leftrightarrow3c-3a=0\)\(\Leftrightarrow c=a\)  (1)

  Ta lại có:\(\frac{c}{a+b}=\frac{1}{2}\Leftrightarrow a+b=2c\)

              \(\Rightarrow a+b-a-c=2c-2b\Leftrightarrow b-c=2c-2b\)

              \(\Leftrightarrow b=2c-2b+c=3c-2b\)

              \(\Leftrightarrow3c-2b-b=0\Leftrightarrow3c-3b=0\Leftrightarrow c=b\)   (2)

Từ (1) và (2) \(\Rightarrow a=b=c\)

Phạm Dương Ngọc Nhi
Xem chi tiết
Nguyễn Phương Anh
18 tháng 10 2017 lúc 21:24

a, \(a^2+b^2=\left(a+b\right)^2-2ab\)

Thay a+b=s; ab vào đa thức trên ta được:

\(\left(a+b\right)^2-2ab=s^2-2p\)

b, \(a^3+b^3=\left(a+b\right)^3+3a^2b-3ab^2\)

\(=\left(a+b\right)^3-3ab.\left(a+b\right)\)

Thay a+b=s; ab=p Ta được:

\(\left(a+b\right)^3-3ab.\left(a+b\right)=s^3-3sp\)

c, \(a^4+b^4=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=\left(s^2-2p\right)^2-2p^2=s^4-4s^2p+2p^2\)

CHÚC HỌC TỐT!!