Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngôi sao tình yêu
Xem chi tiết
Nguyễn Trâm Anh
16 tháng 10 2018 lúc 12:10

Với n chẵn thì n = 2k

\(\Rightarrow16^{2k}-1=256^k-1=\left(256-1\right)\left(256^{k-1}+...\right)\)\(=255\left(256^{k-1}+...\right)=17.15.\left(256^{k-1}+...\right)\)

Chia hết cho 17

Với n lẻ thì n = 2k + 1

\(\Rightarrow16^{2k+1}-1=16\left(16^{2k}-1\right)+15\)không chia hết cho 17

Vậy 16n - 1 chia hết cho 17 khi và chỉ khi n là số chẵn

Thương Thương
Xem chi tiết
Phạm Đình Tâm
24 tháng 7 2018 lúc 17:58

Xét n chẵn, n có dạng 2k (k thuộc N), khi đó:

16n - 1 = 162k - 1 = (162)k - 1 chia hết cho 162 - 1 =255, mà 255 chia hết cho 17. Suy ra 16n - 1 chia hết cho 17

Xét n lẻ, n có dạng 2k+1 (k thuộc N), khi đó:

16n - 1 = 162k+1 + 1 - 2 = BS17 -2. Suy ra 16n - 1 ko chia hết cho 17.

Vậy 16n - 1 chia hết cho 17 khi n chẵn

Nguyễn Hương Ly
Xem chi tiết
alibaba nguyễn
10 tháng 12 2016 lúc 12:40

Với n chẵn thì n = 2k

\(\Rightarrow16^{2k}-1=256^k-1=\left(256-1\right)\left(256^{k-1}+...\right)=255\left(256^{k-1}+...\right)=17.15.\left(256^{k-1}+...\right)\)

Chia hết cho 17

Với n lẻ thì n = 2k + 1

\(\Rightarrow16^{2k+1}-1=16\left(16^{2k}-1\right)+15\)không chia hết cho 17

Vậy 16n - 1 chia hết cho 17 khi và chỉ khi n chẵn

Võ Nguyễn Thương Thương
24 tháng 7 2018 lúc 17:08

\(256^{k-1}+....\) là gì vậy bạn nhìn khó hiểu vậy

Võ Nguyễn Thương Thương
24 tháng 7 2018 lúc 17:08

\(256^{k-1}+....\) là gì vậy bạn nhìn khó hiểu vậy

Nguyễn Hương Ly
Xem chi tiết
Ho Thi Ly
Xem chi tiết
Lovely pig
24 tháng 7 2015 lúc 15:04

Nếu n là chẵn thì n+1 là lẻ.

Ta có: n.(n+1) là chẵn nhân lẻ nên sẽ có kết quả n.(n+1) là chẵn.

Nếu n là lẻ thì n+1 là chẵn

Ta có: n.(n+1) là lẻ nhân chẵn nên sẽ có kết quả n.(n+1) là chẵn

Vậy n . ( n + 1 ) là số chẵn với mọi số tự nhiên n

Đậu thị huyền ly
9 tháng 8 2017 lúc 8:13

xet n=2k =>n chia het cho 2

xét n=2k+1=>n+1=2k+1+1=2k+2=2(k+1) chia hết cho 2

vay n.(n+1) la so chan voi moi so tu nhien n

Hoàng hôn  ( Cool Team )
27 tháng 9 2019 lúc 21:39

Nếu n là chẵn thì n+1 là lẻ.

Ta có: n.(n+1) là chẵn nhân lẻ nên sẽ có kết quả n.(n+1) là chẵn.

Nếu n là lẻ thì n+1 là chẵn

Ta có: n.(n+1) là lẻ nhân chẵn nên sẽ có kết quả n.(n+1) là chẵn

Vậy n . ( n + 1 ) là số chẵn với mọi số tự nhiên n

Lê Thị Thanh Quỳnh
Xem chi tiết

1/

Gọi số cần tìm là a

Ta có : 

a : 17 dư 8 

=> a - 8 chia hết cho 17

=> a + 17 - 8 chia hết cho 17

=> a + 9 chia hết cho 17

a : 25 dư 16

=> a - 16 chia hết cho 25

=> a + 25 - 16 chia hết cho 25

=> a + 9 chia hết cho 25

=> a + 9 thuộc BC ( 17 ; 25 )

Ta có :

17 = 17

25 = 52 

=> BCNN ( 17 ; 25 ) = 17 . 52 = 425

=> BC ( 17 ; 25 ) = B ( 425 ) = 

=> a + 9 = B ( 425 ) = { 0 ; 425 ; 950 ; 1375 ; .... }

=> a = { -9 ; 416 ; 941 ; 1366 ; .... }

Mà a là số tự nhiên nhỏ nhất 

=> a = 416

Vậy số cần tìm là 416

Khách vãng lai đã xóa
Nguyễn Linh Chi
14 tháng 12 2019 lúc 16:22

2, Câu hỏi của Dương Đình Hưởng - Toán lớp 6 - Học toán với OnlineMath

Khách vãng lai đã xóa

Ta có :

10n + 18n - 1 = ( 10n - 1 ) + 18n = 999...9 + 18n ( số 999...9 có n chữ số 9 )

                                                    = 9 . ( 111...1 + 2n ) ( số 111...1 có n chữ số 1 )

                                                    = 9 . A

Xét biểu thức trong ngoặc :

A = 111...1 + 2n = 111...1 - n + 3n ( số 111...1 có n chữ số 1 )

Ta đã biết 1 số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3

Số 111...1 ( n chữ số 1 ) có tổng các chữ số là : 1 + 1 + 1 + ... + 1 = n ( vì có n chữ số 1 ) 

=> 111...1 ( n chữ số 1 ) và n có cùng số dư trong phép chia cho 3 

=> 111...1 ( n chữ số 1 ) - n chia hết cho 3 

=> A chia hết cho 3

=> 9 . A chia hết cho 27

Hay 10n + 18n - 1 chia hết cho 27 ( đpcm )

Khách vãng lai đã xóa
Nguyễn Trung Hiếu
Xem chi tiết
Fudo
5 tháng 9 2019 lúc 10:39

Đề vô lí tí ! 

Để em chứng minh vô lí ( Sai thì thôi nha đây chỉ là ý kiến riêng ) : 

\(16^n-1\text{ }⋮\text{ }17\) với 1 là 1 số tự nhiên chẵn

Gỉa sử số tự nhiên chẵn đó là 2 . Thì : 

\(16^n-1=16^2-1=256-1=255\text{ }⋮̸\text{ }7\)

\(\Rightarrow\text{ Đề sai}\)

shitbo
5 tháng 9 2019 lúc 10:39

\(nchan\Rightarrow n=2k\left(k\inℕ\right)\)

\(16\equiv-1\left(mod17\right)\Rightarrow16^2\equiv1\left(mod17\right)\Rightarrow16^{2k}=16^n\equiv1\left(mod17\right)\)

\(16^n-1⋮17\)

Lê Tài Bảo Châu
5 tháng 9 2019 lúc 10:42

The Moon

Chia cho 17 mà em

TRẦN  THỊ QUÝ THÙY 6A
Xem chi tiết
Nguyễn Văn Thi
6 tháng 12 2014 lúc 12:49

Vì n là một số tự nhiên nên có 2 trương hợp:

th1:nếu n là số chẵn thì n+4 là một số chẵn nên tích (n+4)(n+7) là số chẵn

th2:nếu n là số lẻ thì n+7 là số một chẵn nên tích (n+4)(n+7) là số chẵn

=>(n+4)(n+7) luôn là số chẵn

Băng Dii~
15 tháng 12 2017 lúc 13:31
 

* Nếu n lẻ thì n+7 luôn chẵn => (n+4)(n+7) là số chẵn ( vì 1 số chẵn nhân với 1 số lẻ thì kết qả là 1 số chẵn )

* Nếu n chẵn thì n+4 là số chẵn => (n+4)(n+7) là số chẵn ( vì 1 số chẵn nhân vs 1 số chẵn ra kết quả là số chẵn )

  
Nguyễn Ngọc Như Hiếu
Xem chi tiết