1)giải PT nghiệm nguyên
\(2x^2+x+y+1=x^2+2y^2+xy\)
1.Giải pt \(\frac{1}{\left(2x+1\right)^2}+\frac{1}{\left(2x+2\right)^2}=3\)
2.Tìm nghiệm nguyên của pt \(x^3+y^3-x^2y-xy^2=5\)
\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)
\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)
2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)
TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)
TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)
TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
Vậy......
bạn mai anh làm đúng rồi mình xét thiếu trường hợp . nhưng nên phân tích thành (x+y)(x-y)2 dễ hơn
Giải pt nghiệm nguyên:
1) 3(x2-xy+y2)=7(x+y)
2) 5(x2+xy+y2)=7(x+2y)
Giải pt nghiệm nguyên :
a, x2 -2xy + y2 -3x +2y +1=0
b, x2 + xy +y2 = 2x + y
Giải pt nghiệm nguyên: \(x^2y+1=x^2+2xy+2x+y\)
\(PT\Leftrightarrow y\left(x^2-2x-1\right)=x^2+2x-1\).
Từ đó \(x^2-2x-1\vdots x^2+2x-1\)
\(\Leftrightarrow4x⋮x^2+2x-1\) (1)
\(\Rightarrow4\left(x^2+2x-1\right)-4x^2⋮x^2+2x-1\)
\(\Leftrightarrow8x-4⋮x^2+2x-1\) (2)
Từ (1), (2) suy ra \(8⋮x^2+2x-1\).
Đến đây bạn xét TH.
Giải pt nghiệm nguyên sau
\(x^2y^2+xy+1=x^2\)
\(x^2y^2+xy+1=x^2\)
\(\Leftrightarrow4x^2y^2+4xy+4=4x^2\)
\(\Leftrightarrow\left(2xy+1\right)^2+3=4x^2\)
\(\Leftrightarrow\left(2x-2xy-1\right)\left(2x+2xy+1\right)=3=1.3=\left(-1\right).\left(-3\right)\)
TH1: \(\left\{{}\begin{matrix}2x-2xy-1=1\\2x+2xy+1=3\end{matrix}\right.\Leftrightarrow...\)
TH2: \(\left\{{}\begin{matrix}2x-2xy-1=3\\2x+2xy+1=1\end{matrix}\right.\Leftrightarrow...\)
TH3: \(\left\{{}\begin{matrix}2x-2xy-1=-1\\2x+2xy+1=-3\end{matrix}\right.\Leftrightarrow...\)
TH4: \(\left\{{}\begin{matrix}2x-2xy-1=-3\\2x+2xy+1=-1\end{matrix}\right.\Leftrightarrow...\)
Giải pt nghiệm nguyên:
\(x^3+y^3=5+x^2y+xy^2\)
\(x^3+y^3=5+x^2y+xy^2\Rightarrow x^3+y^3-\left(x^2y+xy^2\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x-y\right)^2=5\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\5>0\end{matrix}\right.\Rightarrow x+y>0\)
Lại có \(\left\{{}\begin{matrix}\left(x-y\right)^2\in N\\\left(x-y\right)^2< 5\end{matrix}\right.\) và \(\left(x-y\right)^2\) là số chính phương
\(\Rightarrow\left(x-y\right)^2=1\Rightarrow\left\{{}\begin{matrix}x+y=5\\x-y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Giải pt nghiệm nguyên:
2y(2x2+1) - 2x(2y2+1)+1=x3.y3
Lời giải:
Ta đưa về bài toán tìm nghiệm nguyên dương.
TH1: x,y∈Z+x,y∈Z+
PT tương đương: (x−y)(4xy−2)=(xy)3−1≥0⇒x≥y(x−y)(4xy−2)=(xy)3−1≥0⇒x≥y
Nếu x=yx=y thì hiển nhiên có xy=1⇒x=y=1xy=1⇒x=y=1.
Xét x>yx>y có 4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy(1)(1)
Vì 2(x−y)−1≠02(x−y)−1≠0 nên suy ra để có (1)(1) thì 2(x−y)−1≥xy⇔(y−2)(x+2)≤−5<02(x−y)−1≥xy⇔(y−2)(x+2)≤−5<0
⇒y−2<0→y=1⇒y−2<0→y=1. Thay vào PT ban đầu thu được x=y=1x=y=1 (loại vì đang xét x>yx>y)
TH2: x,yx,y đều âm. Ta thay x=−a,y=−bx=−a,y=−b với a,ba,b nguyên dương.
Phương trình trở thành 2a(2b2+1)−2b(2a2+1)+1=(ab)32a(2b2+1)−2b(2a2+1)+1=(ab)3
Đây là dạng PT tương tự TH1, ta cũng thu được a=b=1a=b=1, tức là x=y=−1x=y=−1
TH3: x>0,y<0x>0,y<0. Đặt x=a,y=−bx=a,y=−b (a,ba,b nguyên dương)
PT tương đương: 2b(2a2+1)+2a(2b2+1)−1=(ab)32b(2a2+1)+2a(2b2+1)−1=(ab)3
⇒2(a+b)−1⋮ab⇒2(a+b)−1⋮ab. Vì 2(a+b)−1≠02(a+b)−1≠0 nên 2(a+b)−1≥ab⇒(a−2)(b−2)≤32(a+b)−1≥ab⇒(a−2)(b−2)≤3
Với a,b≥1a,b≥1 dễ dàng suy ra không có bộ nghiệm nào thỏa mãn
TH4: x<0,y>0x<0,y>0. Đặt x=−a,y=bx=−a,y=b (a,ba,b nguyên dương)
PT tương đương 2a(2b2+1)+2b(2a2+1)+1+(ab)3=02a(2b2+1)+2b(2a2+1)+1+(ab)3=0 (vô lý)
Vậy (x,y)=(1;1)(x,y)=(1;1) hoặc (x,y)=(−1;−1)
Lời giải:
Ta đưa về bài toán tìm nghiệm nguyên dương.
TH1: x,y∈Z+
PT tương đương: (x−y)(4xy−2)=(xy)3−1≥0⇒x≥y
Nếu x=y thì hiển nhiên có xy=1⇒x=y=1.
Xét x>y có 4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy(1)
Vì 2(x−y)−1≠0 nên suy ra để có (1) thì 2(x−y)−1≥xy⇔(y−2)(x+2)≤−5<0
⇒y−2<0→y=1. Thay vào PT ban đầu thu được x=y=1 (loại vì đang xét x>y)
TH2: x,y đều âm. Ta thay x=−a,y=−b với a,b nguyên dương.
Phương trình trở thành 2a(2b2+1)−2b(2a2+1)+1=(ab)3
Đây là dạng PT tương tự TH1, ta cũng thu được a=b=1, tức là x=y=−1
TH3: x>0,y<0. Đặt x=a,y=−b (a,b nguyên dương)
PT tương đương: 2b(2a2+1)+2a(2b2+1)−1=(ab)3
⇒2(a+b)−1⋮ab. Vì 2(a+b)−1≠0 nên 2(a+b)−1≥ab⇒(a−2)(b−2)≤3
Với a,b≥1 dễ dàng suy ra không có bộ nghiệm nào thỏa mãn
TH4: x<0,y>0. Đặt x=−a,y=b (a,b nguyên dương)
PT tương đương 2a(2b2+1)+2b(2a2+1)+1+(ab)3=0 (vô lý)
Vậy (x,y)=(1;1) hoặc (x,y)=(−1;−1)
giải phương trình nghiệm nguyên sau
\(2y^2x+x+y+1=x^2+2y^2+xy\)
>>>>x^2-(2y^2+1-y)x+2y^2-y-1=0
>>>>delta=(2y^2+1-y)^2-4(2y^2-y-1) (tự tính nha bn)
có kq>>>để pt có no nguyên>>>>delta là sôc chính phương>>>xong
Giải pt nghiệm nguyên : x^2+2y^2+3xy-2x-y=6
dùng denta là xong ngay ấy bạn
(Đưa về phương trình bậc 2 ẩn yy, tham số xx)
Pt ⇔2y2+(3x−1)y+x2−2x−6=0⇔2y2+(3x−1)y+x2−2x−6=0
Δ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀xΔ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀x
Để phương trình đã cho có nghiệm nguyên thì Δ=(x+5)2+24Δ=(x+5)2+24 phải là một số chính phương.
Đặt (x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(tích của 2 số nguyên có tổng chẵn, (số bé .số lớn)
Lập bảng xét giá trị ta được các giá trị của xx và yy:
x=−10→y=6tm;x=−10→y=6tm;
x=−6→y=6tm;x=−6→y=6tm;
x=−4→y=4,5ktm;x=−4→y=4,5ktm;
x=0→y=2tmx=0→y=2tm
Vậy...