Chứng minh bất đẳng thức sau:
452-312>442-302
(17+13)2>172+132
Chứng minh bất đẳng thức : A = 31x ^4 -6x + 17 > 0
Chứng minh đẳng thức
-(-a+b-17)+(-3b+a-13)-20=-2.(2b-a+1)+(-14)
chứng minh đẳng thức:
-(-a+b-17)+(-3b+a-13)-20=-2.(2b-a+1)+(-14)
Chứng minh các bất đẳng thức sau: \(\dfrac{x^2+1}{x}\ge2\)
BĐT này sai nha bạn.
Nó chỉ đúng khi \(x>0\)
Với \(x>0\) thì bất đẳng thức tương đương với \(x^2+1\ge2x\)
\(\Leftrightarrow x^2-2x+1\ge0\) \(\Leftrightarrow\left(x-1\right)^2\ge0\) (luôn đúng)
\(\Rightarrow\) Điều cần chứng minh là đúng
Chứng minh các bất đẳng thức sau: tanx > sinx, 0 < x < π /2
Xét hàm số f(x) = tanx − sinx trên nửa khoảng [0; π /2);
x ∈ [0;1/2)
Dấu “=” xảy ra khi x = 0.
Suy ra f(x) đồng biến trên nửa khoảng [0; π /2)
Mặt khác, ta có f(0) = 0, nên f(x) = tanx – sinx > 0 hay tanx > sinx với mọi x ∈ [0; 1/2)
Chứng minh các bất đẳng thức sau ( n ∈ N ∗ ) 2 n + 2 > 2 n + 5
Với n = 1 thì 2 1 + 2 = 8 > 7 = 2 . 1 + 5
Giả sử bất đẳng thức đúng với n = k ≥ 1 tức là 2k + 2 > 2k + 5 (1)
Ta phải chứng minh nó cũng đúng với n = k + 1,
tức là 2k + 3 > 2(k + 1) + 5 hay 2k + 3 > 2k + 7(2)
Thật vậy, nhân hai vế của (1) với 2, ta được
2k + 3 > 4k + 10 = 2k + 7 + 2k + 3
Vì 2k + 3 > 0 nên 2k + 3 > 2k + 7(đpcm)
Chứng minh đẳng thức:
- (-a + b -17 ) + (-3b + a- 13 ) - 20 = -2 . ( 2b - a + 1 ) + (-14)
Chứng minh đẳng thức :
-(-a+b-17)+(-3b+a-13)-20= -2.(2b-a+1)+(-14)