Cho A=3+32+33+.....+399+3100
Tìm số tự nhiên N biết rằng : 2*A+3=3N
Cho A = 3 + 32 + 33+ ... + 399.Tìm số tự nhiên n, biết rằng 2A + 3 = 3n
A=3+32+33+...+399
3A=32+33+...+3100
3A-A=(32+33+...+3100)-(3+32+33+...+399)
2A=3100-3
2A+3=3100
⇒n=100
Đây nè bạn, chúc bạn học tốt :))
A = 3 + 32 + 33+ ... + 399
3A = 3. (3 + 32 + 33+ ... + 399)
3A \(=3^2+3^3+3^4+...+3^{100}\)
3A \(=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+...+3^{99}\right)\)
2A\(=3^{100}-3\)
Vậy, sau khi tìm đc 2A, ta tìm stn n nha:
2A + 3 = 3n
\(=3^{100}-3+3=3^n\)
⇒\(3^{100}=3^n\)(Vì -3 +3 = 0)
Vậy n = 100
Câu 24: (0,5 điểm) Cho B = 3 + 32 + 33 + ... + 3100
Tìm số tự nhiên n, biết rằng 2B + 3 = 3n
các bạn giúp mình vứi ![]()
\(\Leftrightarrow3B=3^2+3^3+...+3^{101}\\ \Leftrightarrow3B-B=3^{101}-3\\ \Leftrightarrow2B=3^{101}-3\\ \Leftrightarrow2B+3=3^{101}=3^n\\ \Leftrightarrow n=101\)
a) Cho A = 3 + 32 + 33 + 34 +… + 3100
Tìm số tự nhiên n để: 2A + 3 = 34n+1
b) Tìm các số nguyên tố x, y thỏa mãn: x2 + 1 = 6y2 + 2
a) Cho A = 3 + 32 + 33 + 34 +… + 3100
Tìm số tự nhiên n để: 2A + 3 = 34n+1
b) Tìm các số nguyên tố x, y thỏa mãn: x2 + 1 = 6y2 + 2
cho A =3+32 +33+....+3100
Tìm số tự nhiên n , biết rằng 2A + 3 = 3n![]()
![]()
A=3+32+33+...+3100
3A=32+33+...+3101
3A-A=(32+33+...+3101)-(3+32+33+...+3100)
2A=3101-3
2A+3=3101
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\)
Theo đề bài ta có 2A + 3 = 3n ( \(n\in N\) )
\(\Rightarrow2A+3=3^{101}-3+3=3^n\)
\(\Rightarrow2A+3=3^{101}=3^n\)
\(\Rightarrow3^{101}=3^n\)
\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)
Vậy n = 101
Cho A = 3 + 3 2 + 3 3 + . . . + 3 100 . Tìm số tự nhiên n biết rằng 2A+3= 3 n
A. n=99
B. n=100
C. n=101
D. n=102
Cho: A = 3 + 3 2 + 3 3 + . . . + 3 100
Tìm số tự nhiên n biết rằng: 2A+3 = 3 n
Ta có: A = 3 + 3 2 + 3 3 + . . . + 3 100
=> 3 A = 3 2 + 3 3 + 3 4 + . . . + 3 101
=> 3 A - A = ( 3 2 + 3 3 + 3 4 + . . . + 3 101 ) - ( 3 + 3 2 + 3 3 + . . . + 3 100 )
=> 2 A = 3 2 + 3 3 + 3 4 + . . . + 3 101 - 3 - 3 2 - 3 3 - . . . - 3 100
2 A = 3 101 - 3 <=> 2 A + 3 = 3 101 , mà 2 A + 3 = 3 n
=> n = 101
a) Cho A = 3 + 32 + 33 + 34 +… + 3100
Tìm số tự nhiên n để: 2A + 3 = 34n+1
b) Tìm các số nguyên tố x, y thỏa mãn: x2 + 1 = 6y
Mọi người cứu với
\(a,A=3+3^2+3^3+3^4+...+3^{100}\\ 3A=3^2+3^3+3^4+3^5+3^{101}\\ 3A-A=2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}=3^{4.25+1}\\ \Rightarrow n=25\)
a) Tìm số nguyên x,y, biết ( x-3).(y+1)=15
b)Cho m bằng 1+3+32+34+....+ 399+3100
Tìm số dư khi chia cho 13, chia m cho 40
a: (x-3)(y+1)=15
=>\(\left(x-3\right)\left(y+1\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>(x-3;y+1)\(\in\){(1;15);(15;1);(-1;-15);(-15;-1);(3;5);(5;3);(-3;-5);(-5;-3)}
=>(x,y)\(\in\){(4;14);(18;0);(2;-16);(-12;-2);(6;4);(8;2);(0;-6);(-2;-4)}
b: Sửa đề:\(m=1+3+3^2+3^3+...+3^{99}+3^{100}\)
\(m=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=4+13\left(3^2+3^5+...+3^{98}\right)\)
=>m chia 13 dư 4
\(m=1+3+3^2+...+3^{99}+3^{100}\)
\(=1+\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1+3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)
\(=1+40\left(3+3^5+...+3^{97}\right)\)
=>m chia 40 dư 1
cho B= 3+32+ 33+ ... + 3100 tìm số tự nhiên n biệt rằng 2B+3=3n
\(B=3+3^2+3^3+...+3^{100}\\3B=3^2+3^3+3^4+...+3^{101}\\3B-B=(3^2+3^3+3^4+...+3^{101})-(3+3^2+3^3+...+3^{100})\\2B=3^{101}-3\\\Rightarrow 2B+3=3^{101}\)
Mà: \(2B+3=3^n\)
\(\Rightarrow3^n=3^{101}\Rightarrow n=101\left(tm\right)\)
Vậy: n = 101.