tính x,y thuộc Z biết:
a) x^2+2y^2+3xy+3x+5y=15
b)8x^2+23y^2+16x-44y+16xy-1180=0
tìm nghiệm nguyên của pt : \(8x^2+23y^2+16x-44y+16xy-1180=0\)
giải pt nghiệm nguyên
\(8x^2+23y^2+16x-44y+16xy-1180=0\)
Coi phương trình đã cho là phương trình bậc hai a ẩn x, y là tham số. Dùng điều kiện có nghiệm cuả phương trình để giải
pt <=> \(16x^2+32xy+46y^2+32x-88y=2360\)
<=> \(\left(4x+4y+4\right)^2+30y^2-120y+120=2496\)
<=> \(\left(4x+4y+4\right)^2+30\left(y^2-4y+4\right)=2496\)
<=> \(8\left(x+y+1\right)^2+15\left(y-2\right)^2=2496\)
Có: \(15\left(y-2\right)^2\)là 15 lần của 1 SCP
=> \(0\le\left(y-2\right)^2\le\frac{2496}{15}\)
Mà \(\left(y-2\right)^2\)là 1 SCP
=> \(\left(y-2\right)^2=0^2;1^2;...;12^2\)
Đến đây bạn xét từng trường hợp là ra rùi !!!!!!
tìm nghiệm nguyên của phương trình : \(8x^2+23y^2+16x-44y+16xy-1180=0\)
a,giai pt (x-3/x-2)^3-(x-3)^3=16
b,tim nghiem nguyen cua pt: 8x^2+23y^2+16x-44y-1180=0
Mấy anh chị giúp em với
1.Cho P = 1/x^2+x+1 tìm x thuộc Z để P thuộc Z 2.Cho x+y =1 tính giá trị của m=8x2 + 16x2y + 16xy2 + 8y2- 5x - 5y + 2018Bài 2:
\(M=8\left(x^2+y^2+2x^2y+2xy^2\right)-5\left(x+y\right)+2018\)
\(M=8\left[\left(x+y\right)^2-2xy+2xy\left(x+y\right)\right]-5+2018\)
\(=8\left[1-2xy+2xy\right]+2013\)
=8+2013
=2021
TÌM X,Y THUỘC Z BIẾT
xy+x-2y=3
3x+5y+175
3xy+6x+y_32=0
2x+5y+3xy=8
4xy-3(x+y)=59
xy-x-y=2
Tìm \(x;y\in Z^+\) biết :
\(a,2x^2-xy+7x+2y-y^2-7=0\)
\(b,x^2+2y^2+3xy+3x+5y-14=0\)
P/s: Hướng dẫn em làm chi tiết dạng này nữa với ạ
Lớp 8 thì bài này hơi phức tạp, lớp 9 sử dụng delta kẹp biến sẽ dễ hơn
Hướng dẫn 1 câu, câu sau bạn tự làm nhé:
\(\left(2x^2-xy-y^2\right)+7x+2y-7=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+7x+2y-7=0\)
(Đến đây ta cần chuyển về dạng \(XY+a.X+b.Y+...\) để đưa về pt nghiệm nguyên quen thuộc.
Do đó ta cần phân tách \(7x+2y\) về dạng \(a\left(x-y\right)+b\left(2x+y\right)\)
\(7x+2y=a\left(x-y\right)+b\left(2x+y\right)\)
\(\Leftrightarrow7x+2y=\left(a+2b\right)x+\left(-a+b\right)y\)
Đồng nhất hệ số 2 vế: \(\left\{{}\begin{matrix}a+2b=7\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\end{matrix}\right.\)
Do đó ta tách được như dưới đây, toàn bộ phần tách trên làm ở nháp):
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)-7=0\)
(Dạng cơ bản \(XY+X+3Y-7=0\) rồi)
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)+3-10=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+y+1\right)+3\left(2x+y+1\right)=10\)
\(\Leftrightarrow\left(x-y+3\right)\left(2x+y+1\right)=10\)
Đến đây thì chỉ cần lập bảng ước số là xong
Cho x+y=1. Tính giá trị biểu thức \(M=8x^2+16x^2y+16xy^2+8y^2-5x-5y+2018\)
\(M=8x^2+16x^2y+16xy^2+8y^2-5x-5y+2018\)
\(=8\left(x+y\right)^2-16xy+16x^2y+16xy^2\)\(-5\left(x+y\right)+2018\)
\(=8\left(x+y\right)^2+16xy\left(x+y-1\right)-5\left(x+y\right)+2018\)
Thay \(x+y=1\)
\(\Rightarrow M=8+16xy.\left(1-1\right)-5.1+2018\)
\(\Rightarrow M=2021\)
\(4x^2y+20x^2y^3-16xy^2\\ x^3-3x^2-x+3\\ x^2-2xy-9+y^2\\ x^2-8x+15\)