cho x,y,z là 3 số thược dương thỏa mãn: (x+y)(y+z)(z+x)=8xyz. Chứng minh rằng: x^3+y^3+z^3=3xyz
Cho x,y,z là 3 số thực dương thỏa mãn
(x+y)×(y+z)×(z+x)=8xyz
Chứng minh rằng x^3+y^3+z^3=3xyz3xyz
Đang cần gấp
Áp dụng BĐT Cosi cho 3 số x,y,z dương ta có:
\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};z+x\ge2\sqrt{zx}\)
Nhân các BĐT vế theo vế ta được:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8\sqrt{x^2y^2z^2}=8xyz\)
Dấu "=" xảy ra khi x = y = z
<=> x-y=y-z=z-x=0
<=>(x-y)2+(y-z)2+(z-x)2=0
<=>x2-2xy+y2+y2-2yz+z2+z2-2zx+x2=0
<=>2x2+2y2+2z2-2xy-2yz-2zx=0
<=>x2+y2+z2-xy-yz-zx=0
<=>(x+y+z)(x2+y2+z2-xy-yz-zx)=0 (vì x,y,z>0 nên x+y+z>0)
<=>x3+y3+z3-3xyz=0
<=>x3+y3+z3=3xyz (đpcm)
Cho x,y,z là các số dương thỏa mãn điều kiện (x+y)(y+z)(z+x) = 8xyz.
Chứng minh rằng x = y =z.
Áp dụng bất đẳng thức Co-si cho hai số không âm ta có:
\(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(z+x\ge2\sqrt{zx}\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8\sqrt{\left(xyz\right)^2}=8xyz\)
Dấu "=" <=> x = y = z. (đpcm)
Áp dụng bất đẳng thức AM-GM ta có :
\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};z+x\ge2\sqrt{zx}\)
Nhân vế với vế các bđt trên ta được bđt cần cm
Đẳng thức xảy ra <=> x = y = z :v
Cho x; y; z là các số dương thỏa mãn điều kiện (x + y) . (y + z) . (z + x) = 8xyz
Chứng minh rằng x = y = z
Áp dụng BĐT cô-si cho 2 số dương ta có:
\(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(x+z\ge2\sqrt{xz}\)
=>\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}=8\sqrt{x^2y^2z^2}=8xyz\)
Dấu"=" xảy ra <=>x=y y=z z=x=>x=y=z
=>\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=8xyz\Leftrightarrow x=y=z\)(ĐPCM)
Áp dụng BĐT Cauchy cho 2 số không âm, ta được:
\(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow x+y\ge2\sqrt{xy}\)
\(\frac{y+z}{2}\ge\sqrt{yz}\Rightarrow y+z\ge2\sqrt{yz}\)
\(\frac{x+z}{2}\ge\sqrt{xz}\Rightarrow x+z\ge2\sqrt{xz}\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{\left(xyz\right)^2}=8xyz\)(Vì x,y,z > 0)
Cho x,y,z là cá số nguyên dương thỏa mãn điều kiện : ( x + y )( y+z )( z + x ) = 8xyz
Chứng minh rằng x = y = z
Vì x,y,z là các số nguyên dương
nên áp dụng bất đẳng thức Cauchy ta có :
\(x+y\ge2\sqrt{xy}\)(1)
\(y+z\ge2\sqrt{yz}\)(2)
\(z+x\ge2\sqrt{zx}\)(3)
Nhân (1), (2) và (3) theo vế ta có :
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}=8\sqrt{xy\cdot yz\cdot zx}=8\sqrt{x^2y^2z^2}=8\left|xyz\right|=8xyz\)
( do x,y,z là các số nguyên dương )
Đẳng thức xảy ra <=> x = y = z
=> đpcm
áp dụng BĐT AM-GM
ta có \(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(z+x\ge2\sqrt{zx}\)
=>\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z\left(ĐPCM\right)}\)
P/s : Mik ko chắc
Áp dụng BĐT Cô - si , ta có :
\(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow x+y\ge2\sqrt{xy}\left(1\right)\)
\(\frac{y+z}{2}\ge\sqrt{yz}\Rightarrow y+z\ge2\sqrt{yz}\left(2\right)\)
\(\frac{z+x}{2}\ge\sqrt{zx}\Rightarrow z+x\ge2\sqrt{zx}\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8.\sqrt{x^2y^2z^2}\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8\left(\sqrt{xyz}\right)^2\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)
Dấu \("="\)
\(\Leftrightarrow x=y=z\)
\(\left(đpcm\right)\)
~ Ủng hộ nhé
Bài1 Tìm n∈N để (xn2 -8)2+36 là số nguyên tố
bài 2 Cho Biểu thức a=x3+y3+z3 -3xyz
a)Chứng minh rằng x=y=z
b) Chứng minh ngược lại
bài3 Cho x,y,z là các số dương thỏa mán điều kiện (x+y)×(y+z)×(z+x)=8xyz Chứng minh x=y=z
Bài 3:
\(\left\{{}\begin{matrix}x+y>=2\sqrt{xy}\\y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\end{matrix}\right.\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)>=8xyz\)
Dấu = xảy ra khi x=y=z
Cho x,y,z là số thực dương khác 0 thoả mãn (1/x+1/y+1/z)^2=1/x^2+1/y^2+1/z^2
Chứng minh rằng x^3+y^3+z^3=3xyz
ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)
\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=0\)
=> x + y + z = 0
Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)
x3 + y3 + z3 - 3xyz = 0
=> x3 + y3 + z3 = 3xyz
ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)
=> 1/xy + 1/yz + 1/xz = 0
=> x + y + z = 0
Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)
x3 + y3 + z3 - 3xyz = 0
=> x3 + y3 + z3 = 3xyz
Cho x,y,z là số dương để thỏa mãn điều kiện :
(x+y)(y+z)(z+x)= 8xyz
Chứng minh x=y=z
cho x,y,z là 3 số dương thỏa mãn \(x^2+y^2+z^2=3xyz\)
chứng minh rằng \(\frac{x^2}{y+2}+\frac{y^2}{z+2}+\frac{z^2}{x+2}\ge1\)
cho x, y, z thỏa mãn x^3+y^3+3xyz<0 và z>0. chứng minh x+y<z
lllllllllllllllllllllllllllllllllllllllllllllllllllllll