Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thảo
Xem chi tiết

<=>  x^3 - 5x^2 +3x -4 =0

Bài này sai đề rồi 

trần nguyễn phương mai
Xem chi tiết
Nguyễn Thị Hồng Anh
Xem chi tiết
Nguyễn Minh Dương
Xem chi tiết
when the imposter is sus
22 tháng 9 2023 lúc 15:17

(x - 13 + y)2 + (x - 6 - y)2 ≥ 0 + 0 = 0

Vì dấu "=" xảy ra nên x - 13 + y = 0 và x - 6 - y = 0

x + y = 13 và x - y = 6

x = (13 - 6) : 2 = 3,5

y = 13 - 3,5 = 9,5

Vậy x = 3,5 và y = 9,5

(\(x\) - 13 + y)2 + (\(x\) - 6 - y)2 = 0

(\(x\) - 13 + y)2 ≥ 0 ∀ \(x;y\)

(\(x-6-y\))2 ≥ 0 ∀ \(x;y\)

⇒(\(x-13+y\))2 + (\(x\) - 6- y)2 = 0

⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x-6-y=0\\x-13+y+x-6-y=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}y=x-6\\2x=19\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\)

 

Phan Thị Dung
22 tháng 9 2023 lúc 15:48


𝓥𝓲̀ \(\left(x-13+y\right)^2\ge0;\left(x-6-y\right)^2\ge0\)

\(\Rightarrow\left(x-13+y\right)^2+\left(x-6-y\right)^2\ge0\)

𝓓𝓪̂́𝓾 𝓫𝓪̆̀𝓷𝓰 𝔁𝓪̉𝔂 𝓻𝓪 𝓴𝓱𝓲 \(\left(x-13+y\right)^2=0;\left(x-6-y\right)^2=0\) 

\(\Rightarrow\left(x-13+y\right)^2=0\)                             \(\Rightarrow\left(x-6-y\right)^2=0\)

\(x-13+y=0\)                                      \(x-6-y=0\)

\(x+y=13\)                                            \(x-y=6\)

\(\Rightarrow\)𝔁 𝓵𝓪̀ 1 𝓼𝓸̂́  𝓵𝓸̛́𝓷 𝓱𝓸̛𝓷 𝔂 𝓫𝓸̛̉𝓲 𝓿𝓲̀ 𝓴𝓱𝓲 𝔁-𝔂 𝓴𝓮̂́𝓽 𝓺𝓾𝓪̉ 𝓵𝓪̀ 1 𝓼𝓸̂́ 𝓷𝓰𝓾𝔂𝓮̂𝓷 𝓭𝓾̛𝓸̛𝓷𝓰

\(\Rightarrow x=\left(13+6\right)\div2=9,5\)                                  

\(\Rightarrow y=13-9,5=3,5\) 

𝓥𝓪̣̂𝔂 𝔁=9,5 𝓿𝓪̀ 𝔂=3,5                          

 

Nguyễn Minh Dương
Xem chi tiết

(\(x\) -13 +y)2 + (\(x\) - 6 - y)2 = 0

(\(x-13+y\))2 ≥0; (\(x\) - 6 - y)2 ≥ 0∀ \(x;y\)

⇒(\(x-13+y\))2 + (\(x-6-y\))2 = 0

⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)

⇒ -13 - 6 + 2\(x\) = 0 ⇒ \(x\) = \(\dfrac{19}{2}\) ⇒ y = \(\dfrac{19}{2}\) - 6 ⇒ y = \(\dfrac{7}{2}\)

Vậy (\(x\);y) = (\(\dfrac{19}{2}\)\(\dfrac{7}{2}\))

Nguyễn Đức Trí
23 tháng 9 2023 lúc 8:41

\(\left(x-13+y\right)^2+\left(x-6-y\right)^2=0\left(1\right)\)

Ta có :

\(\left\{{}\begin{matrix}\left(x-13+y\right)^2\ge0,\forall x;y\in R\\\left(x-6-y\right)^2\ge0,\forall x;y\in R\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x-13+y\right)^2=0\\\left(x-6-y\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=19\\y=x-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6=\dfrac{7}{2}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\) thoả mãn đề bài

Hân Nguyễn
Xem chi tiết
Làm biếng quá
11 tháng 8 2018 lúc 15:12

\(\left(5-x\right).\left(3x-\frac{1}{4}\right)>0\)

\(\Leftrightarrow\hept{\begin{cases}5-x>0\\3x-\frac{1}{4}>0\end{cases}}\) hoặc \(\hept{\begin{cases}5-x< 0\\3x-\frac{1}{4}< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x< 5\\x>\frac{1}{12}\end{cases}}\)  hoặc  \(\hept{\begin{cases}x>5\\x< \frac{1}{12}\end{cases}}\) (vô lí)

Vậy \(\frac{1}{12}< x< 5\)

lele_cute 2k7
Xem chi tiết
Lê Tài Bảo Châu
17 tháng 5 2019 lúc 20:58

b0 Ta có: \(|x-y|\ge0\forall x,y\)

                 \(\left(x-16\right)^6\ge0\forall x\)

\(\Rightarrow|x-y|+\left(x-16\right)^6\ge0\forall x,y\)

Mà theo đầu bài  \(|x-y|+\left(x-16\right)^6\le0\)

\(\Leftrightarrow|x-y|+\left(x-16\right)^6=0\)

\(\Leftrightarrow\hept{\begin{cases}|x-y|=0\\\left(x-16\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x-16=0\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}y=16\\x=16\end{cases}}\)

VẬY x=16 và y=16

lele_cute 2k7
17 tháng 5 2019 lúc 21:04

Cảm ơn Lê Tài Bảo Châu nhá!!!!!!

Nhưng bạn làm nốt hộ mik nhé!!!

Lê Tài Bảo Châu
17 tháng 5 2019 lúc 21:16

Ta có: \(2x+1⋮3x-1\)

\(\Rightarrow3.\left(2x+1\right)⋮3x-1\)

\(\Rightarrow6x+3⋮3x-1\)

\(\Rightarrow6x-2+5⋮3x-1\)

\(\Rightarrow2.\left(3x-1\right)+5⋮3x-1\)

mà \(2.\left(3x-1\right)⋮3x-1\)

\(\Rightarrow5⋮3x-1\)

\(\Rightarrow3x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

tự tìm x nhá nhưng mà x thuộc Z đó

Cao Chu Thiên Trang
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 4 2020 lúc 14:55

\(\Leftrightarrow2x^3-3x^2+6x+2x^2-3x+6=0\)

\(\Leftrightarrow x\left(2x^2-3x+6\right)+2x^2-3x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2-3x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x^2-3x+6=0\left(vn\right)\end{matrix}\right.\)

_Đi_Tìm_Một_Nửa_
Xem chi tiết
nguyen van huy
8 tháng 4 2017 lúc 20:02

b, \(\left(x^2+2015\right).\left(x-2016\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+2015=0\\x-2016=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x^2==-2015\\x=2016\end{cases}}\)\(x^2=-2015\)loại do \(x^2\ge0\))

Vậy x= 2016

a, \(xy+3x-7y=21\)

\(\Leftrightarrow x.\left(y+3\right)-7y-21=0\)

\(\Leftrightarrow x.\left(y+3\right)-7.\left(y+3\right)=0\)

\(\Leftrightarrow\left(y+3\right).\left(x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y+3=0\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x-7=0\\y+3\in Z\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y=-3\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x=7\\y+3\in Z\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}\hept{\begin{cases}y+3=0\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x-7=0\\y+3\in Z\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y=-7\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x=7\\y+3\in Z\end{cases}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y+3=0\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x-7=0\\y+3\in Z\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y=-3\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x=7\\y+3\in Z\end{cases}}\end{cases}}\)

ST
8 tháng 4 2017 lúc 20:15

a, xy + 3x - 7y = 21

=> x(y + 3) - 7y - 21 = 21 - 21

=> x(y + 3) - (7y + 21) = 0

=> x(y + 3) - 7(y + 3) = 0

=> (x - 7)(y + 3) = 0

=> \(\orbr{\begin{cases}x-7=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}}\)

Vậy x = {7;-3}

b, (x2 + 2015)(x - 2016) = 0

\(\Rightarrow\orbr{\begin{cases}x^2+2015=0\\x-2016=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=2015\left(loại\right)\\x=2016\end{cases}}}\)

Vậy x = 2016