Phân tích đa thức thành nhân tử: \(x^{\text{4}}-2x^2\)
Phân tích đa thức thành nhân tử
\(\dfrac{x^2}{4}\)-xy+y^2
x^2+x+\(\dfrac{1}{\text{4}}\)
x^2+2\(\sqrt{3}\)x+3
4x^2-1
a, \(\dfrac{x^2}{4}-xy+y^2=\left(\dfrac{x}{2}\right)^2-xy+y^2=\left(\dfrac{x}{2}\right)^2-2.\dfrac{x}{2}.y+y^2\)
\(=\left(\dfrac{x^2}{2}-y\right)^2\)
b, \(x^2+x+\dfrac{1}{4}=x^2+\dfrac{1}{2}.2.x+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
c, \(x^2+2\sqrt{3}x+3=x^2+2\sqrt{3}x+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)
d, \(4x^2-1=\left(2x-1\right)\left(2x+1\right)\)
`x^2/4-2*x/2*y+y^2`
`=(x/2-y)^2`
`x^2+x+1/4`
`=x^2+2*x*1/2+(1/2)^2`
`=(x+1/2)^2`
`x^2+2sqrt3x+3`
`=x+2xsqrt3+sqrt3^2`
`=(x+sqrt3)^2`
`4x^2-1`
`=(2x)^2-1`
`=(2x-1)(2x+1)`
phân tích đa thức thành nhân tử (thêm bớt cùng một hạng tử):
x^3 - 2x - 4
phân tích đa thức thành nhân tử (đặt biến phụ):
x^4 + 2x^3 + 5x^2 + 4x - 12
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(\text{1.phân tích đa thức thành nhân tử:}\) \(2x^2+5xy+2y^2\)
\(\text{2.phân tích đa thức thành nhân tử:}\) \(2x^2+2xy-4y^2\)
Bài làm:
1) Ta có: \(2x^2+5xy+2y^2\)
\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)
\(=2x\left(x+2y\right)+y\left(x+2y\right)\)
\(=\left(2x+y\right)\left(x+2y\right)\)
2) Ta có: \(2x^2+2xy-4y^2\)
\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)
\(=2x\left(x-y\right)+4y\left(x-y\right)\)
\(=2\left(x+2y\right)\left(x-y\right)\)
\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)
a,\(2x^2+5xy+2y^2\)
\(=2x^2+4xy+xy+2y^2\)
\(=2x\left(x+2y\right)+y\left(x+2y\right)\)
\(=\left(x+2y\right)\left(2x+y\right)\)
b,\(2x^2+2xy-4y^2\)
\(=2x^2-2xy+4xy-4y^2\)
\(=2x\left(x-y\right)+4y\left(x-y\right)\)
\(=\left(x-y\right)\left(2x+4y\right)\)
phân tích đa thức \(\text{7x^2 – 2x^2 – 2y^2+ 4xy}\) thành nhân tử
Bài 1. Phân tích đa thức 2x – 4y thành nhân tử được kết quả là:
A.2(x – 2y) B. 2( x + y) C. 4(2x – y) D. 2(x + 2y)
Bài 2. Phân tích đa thức 4x2 – 4xy thành nhân tử được kết quả là:
A.4(x2 – xy) B. x(4x – 4y) C. 4x(x – y) D. 4xy(x – y)
Bài 3. Tại x = 99 giá trị biểu thức x2 + x là:
A.990 B. 9900 C. 9100 D. 99000
Bài 4. Các giá trị của x thỏa mãn biểu thức x2 – 12x = 0 là:
A.x = 0 B. x = 12 C. x = 0 và x = 12 D. x = 11
Giúp mik với mik cảm ơn
Phân tích đa thức thành nhân tử
\(x^6+2x^5+x^4-2x^3-2x^2+1\)
\(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)
bài 1: Phân tích đa thức thành nhân tử:
a) (x^2+2x).(x^2+2x+4)+3
\(a)\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)
Để đơn giản hơn cũng như là dễ nhìn hơn thì ta :
Đặt : \(x^2+2x=a\)
Do đó ta có đa thức :
\(a.\left(a+4\right)+3=a^2+4a+3\)
\(=a^2+a+3a+3\)
\(=a\left(a+1\right)+3\left(a+1\right)\)
\(=\left(a+1\right)\left(a+3\right)\)
\(=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)
\(=\left(x+1\right)^2.\left(x^2+2x+3\right)\)
Hoặc bạn có thể đặt \(x^2+2x+2=t\)
Thì \(P=\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)
\(P=\left(t-2\right)\left(t+2\right)+3\)
\(P=t^2-4+3\)
\(P=t^2-1\)
\(P=\left(t-1\right)\left(t+1\right)\)
\(P=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)
\(P=\left(x+1\right)^2\left(x^2+2x+3\right)\)
a) \(\left(x^2+2x\right).\left(x^2+2x+4\right)+3\)
\(=x^4+4x^3+4x^2+4x^3+16x^2+16x\)
\(=x^4+8x^3+20x^2+16x\)
\(=\left(x^4+8x^3+20x^2+16x\right)+3\)
\(=x^4+8x^3+20x^2+16x+3\)
Phân tích đa thức thành nhân tử
\(2x^2-5x+1\)
\(x^4-5x^2+4\)
\(x^3-x^2+2x+4\)
\(x^4-5x^2+4=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
Đa thức x^4 + 2x^3 + x^2 được phân tích thành nhân tử là