Tìm a để bất phương trình đúng với mọi x:
\(\left|3sin^2x+2sinx.cosx+cos2x+a\right|\le3\)
Tìm a>1 để bất phương trình \(log_a\left(1-6a^{-x}\right)+2x-2\ge0\) nghiệm đúng với mọi x>2
Cho bất phương trình:
-4\(\sqrt{\left(4-x\right)\left(2+x\right)}\le x^2-2x+a-18\)
Tìm a để bất phương trình nghiệm đúng với mọi x, \(-2\le x\le4\)
Tìm m để bất phương trình \(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+m\) đúng với mọi x thuộc [-5; 3]
Tìm m để bất phương trình \(x^2-2x+4\sqrt{\left(4-x\right)\left(x+2\right)}-18+m\ge0\) nghiệm đúng với mọi \(x\in\left[-2;4\right]\)
\(x^2-2x+4\sqrt{\left(4-x\right)\left(x+2\right)}-18+m\ge0\)
\(\Leftrightarrow-\left(-x^2+2x+8\right)+4\sqrt{-x^2+2x+8}\ge10-m\left(1\right)\)
Đặt \(t=\sqrt{-x^2+2x+8}\left(0\le t\le3\right)\)
\(\left(1\right)\Leftrightarrow10-m\le f\left(t\right)=-t^2+4t\)
Yêu cầu bài toán thỏa mãn khi
\(10-m\le minf\left(t\right)=min\left\{f\left(0\right);f\left(3\right);f\left(2\right)\right\}=f\left(0\right)=0\)
\(\Leftrightarrow m\ge10\)
Vậy \(m\ge10\)
cho bất phương trình \(6\sqrt{\left(x-2\right)\left(x-32\right)}\le x^2-34x+m\)m
a) Giải bất phương trình với m=48
b) Tìm m để bất phương trình nghiệm đúng với mọi x thỏa mãn diều kiện xác định
Tìm m để các bất phương trình 4 sin 2 x + cos 2 x + 17 3 cos 2 x + sin 2 x + m + 1 ≥ 2 đúng với mọi x ∈ R.
A. 10 - 3 < m ≤ 15 - 29 2
B. 10 - 1 < m ≤ 15 - 29 2
C. 10 - 1 < m ≤ 15 + 29 2
D. 10 - 1 < m < 10 + 1
Tìm m để các bất phương trình sau đúng với mọi x
3 sin 2 x + cos 2 x sin 2 x + 4 cos 2 x + 1 ≤ m + 1
A. m = 1
B. m > 1
C. m > 2
D.Tất cả sai
Tìm a để bất phương trình \(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+a.\)nghiệm đúng với \(\forall x\in\left[-5;3\right]\)
\(\sqrt{-x^2-2x+15}\le x^2+2x+a\)
Đặt \(\sqrt{-x^2-2x+15}=b\). Vì \(x\in[-5;3]\) nên \(b\in[0;4]\)
Bất phương trình trở thành \(b\le-b^2+15+a\Leftrightarrow f\left(b\right)=-b^2-b+a+15\ge0\left(1\right)\)
Ycbt trở thành: Tìm a để BPT (1) nghiệm đúng \(\forall b\in[0;4]\)
\(\Leftrightarrow\hept{\begin{cases}f\left(0\right)\ge0\\f\left(4\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+15\ge0\\a-5\ge0\end{cases}}\Leftrightarrow a\ge5\)
1.Cho \(f\left(x\right)=mx^2+\left(4m-3\right)x+4m-6\). Tìm m để bất phương trình \(f\left(x\right)\ge0\) đúng với \(\forall x\in\left(-1;2\right)\)
2. Cho bất phương trình \(x^2-4x+2|x-3|-m< 0\). Tìm m để bất phương trình đã cho đúng với \(\forall x\in\left[1;4\right]\)