1)Tìm min
\(x^2+y^2+xy-2x-2y+5\)
tìm min 2x^2+y^2-xy+x-2y
\(2x^2+y^2-xy+x-2y=\dfrac{1}{4}x^2-x\left(y-1\right)+\left(y-1\right)^2+\dfrac{7}{4}x^2-1=\left(\dfrac{1}{2}x-y+1\right)^2+\dfrac{7}{4}x^2-1\ge-1\)
\(min=-1\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Tìm min của A = x² + y² + xy - 2x - 2y + 2
1.Tìm Min
A=x^4-8xy-x^3y+x^2y^2-xy^3+y^4+1017
B=x^2+xy+y^2-3x-3y
2.Tìm Max
A=-x^2+2xy-4y^2+2x+10y+5
B= -x2 - 2y2 - 2xy + 2x - 2y -15
\(Tìm Min : B=2x²-4x-8 C=x²-2xy+2y²+2x-10y+17 D=x²-xy+y²-2x-2y E=(x²+x-6)(x²+x+2) F=(x+1)(x+2)(x+3)(x+4) Tìm Max G= 4x-x2 H=25-x-5x2 \)
B = 2\(x^2\) - 4\(x\) - 8
B = 2(\(x^2\) - 2\(x\) + 4) - 16
B = 2(\(x-2\))2 - 16
Vì (\(x-2\))2 ≥ 0 ∀ \(x\) ⇒ 2(\(x-2\))2 ≥ 0 ∀ \(x\)
⇒ 2(\(x-2\))2 - 16 ≥ -16 ∀ \(x\)
Dấu bằng xảy ra khi (\(x-2\))2 = 0 ⇒ \(x-2=0\) ⇒ \(x=2\)
Vậy Bmin = -16 khi \(x=2\)
Tìm min của C biết:
C = \(x^2\) - 2\(xy\) + 2y2 + 2\(x\) - 10y + 17
C = (\(x^2\) - 2\(xy\) + y2) + 2(\(x\) - y) + y2 - 8y + 16 + 1
C = (\(x\) - y)2 + 2(\(x\) - y) + 1 + (y2 - 8y + 16)
C = (\(x-y+1\))2 + (y - 4)2
Vì (\(x\) - y + 1)2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0 ∀ y
Dấu bằng xảy ra khi: \(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x-y+1=0\\y=4\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x-4+1=0\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-1+4\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Vậy Cmin = 0 khi (\(x;y\)) = (3; 4)
D = \(x^2\) - \(xy\) + y2 - 2\(x\) - 2y
D=[\(x^2\)-2\(x\)\(\dfrac{y}{2}\)+(\(\dfrac{y}{2}\))2]-(2\(x\)-2\(\dfrac{y}{2}\)) +1 +(\(\dfrac{3}{4}\)y2-2.\(\dfrac{\sqrt{3}}{2}\)y .\(\sqrt{3}\) +3) - 4
D = (\(x-\dfrac{y}{2}\))2 - 2(\(x-\dfrac{y}{2}\))+ 1 + (\(\dfrac{\sqrt{3}}{2}\)y - \(\sqrt{3}\))2 - 4
D = (\(x-\dfrac{y}{2}\) - 1)2 + (\(\dfrac{\sqrt{3}}{2}\)y - \(\sqrt{3}\))2 - 4
Vì (\(x-\dfrac{y}{2}\) - 1)2 ≥ 0 ∀ \(x\);y và (\(\dfrac{\sqrt{3}}{2}\)y - \(\sqrt{3}\))2 ≥ 0 ∀ y
Vậy (\(x-\dfrac{y}{2}\) - 1)2 + (\(\dfrac{\sqrt{3}}{2}\)y - \(\sqrt{3}\))2 - 4 ≥ - 4 ∀ \(x;y\)
Dấu bằng xảy ra khi: \(\left\{{}\begin{matrix}x-\dfrac{y}{2}-1=0\\\dfrac{\sqrt{3}}{2}y-\sqrt{3}=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x-\dfrac{y}{2}-1=0\\\sqrt{3}.\left(\dfrac{1}{2}y-1\right)=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=1+\dfrac{1}{2}y\\\dfrac{1}{2}y=1\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=1+1\\y=1:\dfrac{1}{2}\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
Vậy Dmin = - 4 khi (\(x;y\)) =(2; 2)
1. Tìm max hoặc min:
a. A = x^2 - 5x - 1
b. B = 1/4x - x + 5.
c. C = x^2 - 4xy + 7y^2 - 2y +3
d. D = 5x^2 - xy + 1/24y^2 + 2x - 1
e. E = x^2 - 3xy + y - 2y - 1
2. Tìm x:
a. ( 2x - 3 )^2 - ( 4x + 1 ).( 4x - 1 ) = ( 2x - 1 ).( 3 - 7x )
b. 1/16x^2 - ( 3x + 5 ) = 0
c. 4.( x - 3 ) - ( x + 2 ) = 0
cho x,y,z là các số thực không âm thỏa mãn x+y+z=1.Tìm min
\(T=\left[\frac{\sqrt[3]{x+y+2z}\left(\sqrt{xy+z}+\sqrt{2x^2+2y^2}\right)}{3\sqrt[6]{xy}}\right]\left(x^2+y^2+z^2\right)-2\sqrt{2x^2-2x+1}\)
cho x+y=1; tìm min A=1/(x^3+y^3+xy)+(4x^2y^2+2)/xy
A= \(\frac{1}{\left(x+y\right)\left(x^2+y^2-xy\right)+xy}+\frac{4x^2y^2+2}{xy}=\)\(\frac{1}{x^2+y^2}+4xy+\frac{2}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+4xy+\frac{1}{4xy}+\frac{5}{4xy}\) (1)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};a+b\ge2\sqrt{ab},\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)áp dụng vào trên ta được
(1) \(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{4}.\frac{4}{\left(x+y\right)^2}=4+2+\frac{5}{4}.4=11.\)
dấu '=" khi x=y = 1/2
cho x, y, z dương thỏa mãn: \(xy+yz+zx=3\). Tìm Min \(P=\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
Xét nào:)
Từ giả thiết suy ra x + y + z > 3
Ta có: \(P=2x^2+xy+2y^2=\frac{5}{4}\left(x+y\right)^2+\frac{3}{4}\left(x-y\right)^2\ge\frac{5}{4}\left(x+y\right)^2\)
Suy ra \(\sqrt{2x^2+xy+y^2}\ge\sqrt{\frac{5}{4}}.\left(x+y\right)=\frac{\sqrt{5}}{2}\left(x+y\right)\)
Tương tự hai BĐT còn lại và cộng theo vế: \(P\ge\sqrt{5}\left(x+y+z\right)\ge3\sqrt{5}\)
Đẳng thức xảy ra khi x = y = z = 1
Is it right?!?
bạn giải thích rõ hộ mình dòng 2 với
Tìm Min :
B=2x²-4x-8
C=x²-2xy+2y²+2x-10y+17
D=x²-xy+y²-2x-2y
E=(x²+x-6)(x²+x+2)
F=(x+1)(x+2)(x+3)(x+4)
Tìm Max
G= 4x-x2
H=25-x-5x2
\(B=2x^2-4x-8=2\left(x^2-2x-4\right)\)
\(=2\left(x^2-2x+1-5\right)\)
\(=2\left[\left(x-1\right)^2-5\right]\)
\(=2\left(x-1\right)^2-10\ge-10\)
Vậy \(B_{min}=-10\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(F=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x+4=t\)
\(\RightarrowĐT=t\left(t+2\right)=t^2+2t+1-1\)
\(=\left(t+1\right)^2-1\ge-1\)
hay \(\left(x^2+5x+5\right)^2-1\ge-1\)
Vậy \(F_{min}=-1\Leftrightarrow x^2+5x+5=0\)
\(\Leftrightarrow x^2+5x+\frac{25}{4}-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{5}{2}=\sqrt{\frac{5}{4}}\\x+\frac{5}{2}=-\sqrt{\frac{5}{4}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{5}{4}}-\frac{5}{2}\\x=-\sqrt{\frac{5}{4}}-\frac{5}{2}\end{cases}}\)
\(G=4x-x^2=-\left(x^2-4x+4-4\right)\)
\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4\le4\)
Vậy \(G_{max}=4\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(H=25-x-5x^2=-5\left(x^2+\frac{x}{5}-5\right)\)
\(=-5\left(x^2+2x.\frac{1}{10}+\frac{1}{100}-\frac{501}{100}\right)\)
\(=-5\left[\left(x+\frac{1}{10}\right)^2-\frac{501}{100}\right]\)
\(=-5\left(x+\frac{1}{10}\right)^2+\frac{101}{20}\le\frac{101}{2}\)
Vậy \(H_{max}=\frac{101}{2}\Leftrightarrow x+\frac{1}{10}=0\Leftrightarrow x=-\frac{1}{10}\)