\(2x^2+y^2-xy+x-2y=\dfrac{1}{4}x^2-x\left(y-1\right)+\left(y-1\right)^2+\dfrac{7}{4}x^2-1=\left(\dfrac{1}{2}x-y+1\right)^2+\dfrac{7}{4}x^2-1\ge-1\)
\(min=-1\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
\(2x^2+y^2-xy+x-2y=\dfrac{1}{4}x^2-x\left(y-1\right)+\left(y-1\right)^2+\dfrac{7}{4}x^2-1=\left(\dfrac{1}{2}x-y+1\right)^2+\dfrac{7}{4}x^2-1\ge-1\)
\(min=-1\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
cho x, y, z dương thỏa mãn: \(xy+yz+zx=3\). Tìm Min \(P=\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
cho x,y,z là các số thực không âm thỏa mãn x+y+z=1.Tìm min
\(T=\left[\frac{\sqrt[3]{x+y+2z}\left(\sqrt{xy+z}+\sqrt{2x^2+2y^2}\right)}{3\sqrt[6]{xy}}\right]\left(x^2+y^2+z^2\right)-2\sqrt{2x^2-2x+1}\)
Cho các số thực dương thõa mãn \(\sqrt[]{xy}+\sqrt[]{yz}+\sqrt[]{xz}=\sqrt[]{xyz}\)
Tìm Min của P=\(\frac{1}{xyz}\left(x\sqrt{2y^2+yz+z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2x^2+xy+2y^2}\right)\)
cho x,y,z là các số thực dương thỏa mãn x+y+2z=3.Tìm Min của :
P= x2+y2+4z2+\(\frac{xy+2yz+2zx}{x^2y+2y^2z+4z^2x}\)
cho x,y,z>0 tìm Min \(\frac{\sqrt{x^2-xy+y^2}}{x+y+2z}+\frac{\sqrt{y^2-yz+z^2}}{y+z+2x}+\frac{\sqrt{z^2-zx+x^2}}{z+x+2y}\)
với hai số dương x, y thỏa mãn x>=2y tìm min M=(x^2+y^2)/xy.
HELPPPPP.....! Các BẠN ơi!
Cho a,b,c>0. TÌM MIN
\(S=\frac{\sqrt{x^2-xy+y^2}}{x+y+2z}+\frac{\sqrt{y^2-yz+z^2}}{y+z+2x}+\frac{\sqrt{z^2-zx+x^2}}{z+x+2y}\)
cho x;y;z là 3 số thực dương
Tìm min \(S=\frac{\sqrt{x^2-xy+y^2}}{x+y+2z}+\frac{\sqrt{y^2-yz+z^2}}{y+z+2x}+\frac{\sqrt{z^2-zx+x^2}}{z+x+2y}\)
Help me~
cho x,y thuộc R Thỏa mãn x^2.y^2 +2y+1=0 , tìm max, min p=xy / 3y+1