Tìm x biết: a) \(4x^2-1=0\)
b) \(7-\sqrt{x}=0\)
a) 1/2 * sqrt(x - 1) - sqrt(4x - 4) + 3 = 0 c) sqrt(7 - x + 1) = x b) sqrt(x ^ 2 - 4x + 4) + x - 2 = 0
a: ĐKXĐ: x>=1
\(\dfrac{1}{2}\sqrt{x-1}-\sqrt{4x-4}+3=0\)
=>\(3+\dfrac{1}{2}\sqrt{x-1}-2\sqrt{x-1}=0\)
=>\(3-\dfrac{3}{2}\sqrt{x-1}=0\)
=>\(\dfrac{3}{2}\sqrt{x-1}=3\)
=>\(\sqrt{x-1}=2\)
=>x-1=4
=>x=5(nhận)
b: \(\sqrt{x^2-4x+4}+x-2=0\)
=>\(\sqrt{\left(x-2\right)^2}=-x+2\)
=>|x-2|=-(x-2)
=>x-2<=0
=>x<=2
c:
ĐKXĐ: 7-x>=0
=>x<=7
\(\sqrt{7-x}+1=x\)
=>\(\sqrt{7-x}=x-1\)
=>\(\left\{{}\begin{matrix}x-1>=0\\7-x=x^2-2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1< =x< =7\\x^2-2x+1-7+x=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}1< =x< =7\\x^2-x-6=0\end{matrix}\right.\Leftrightarrow x=3\)
Bài 1 : Tìm số nguyên x , biết :
a, x . ( x + 7 ) = 0
b, ( 2 + 2x ) . ( 7 - x ) = 0
c, x^3 - 4x = 0
d, ( x^2 - 9 ) . ( 3x + 15 ) = 0
e, ( 4x - 8 ) . ( x^2 + 1 ) = 0
a,x.(x+7)=0
suy ra x=o hoặc x+7=0
vs x+7=0
x=0+7
x=7
vậy x=0 hoặc x=7
b(2+2x)(7-x)=0
suy ra 2+2x=0 hoặc 7-x=0
vs2+2x=0 vs7-x=0
2x =0-2 x=0+7
2x =(-2) x=7
x=(-2);2
x=-1
vậy x=-1 hoặc x=7
d(x^2-9)(3x+15)=0
suy ra x^2-9=0 hoặc 3x+15=0
vsx^2-9=0 vs 3x+15=0
x^2 =0+9 3x =0-15
x^2 =9 3x =-15
x^2 =3^2 x=(-15):3
suy ra x=3 hoặc x=-3 x=-5
vậy x=3 x=-3 hoặc x=-5
e,(4x-8)(x^2+1)=0
suy ra4x-8=0 hoặc x^2+1=0
vs 4x-8=0 vs x^2+1=0
4x =0+8 x^2 =0-1
4x =8 x^2 =-1
x =8:4 x^2 =-1^2 hoặc 1^2
x =2 suy ra x=-1 hoặc x=1
vậy x=2, x=-1 hoặc x=1
Bài 1 : Tìm GTNN của biểu thức : \(A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\)
Bài 2 : Tìm x biết :
a, \(\sqrt{x}< \sqrt{x+1}\)
b, \(\sqrt{x-1}>4\)
c, \(\sqrt{4x^2+4x+1}+\sqrt{2x-1}=0\)
Bài 3 Tìm x,y thuộc Z
a, \(x^2+4x-y=1\)
b, \(x^2-3xy+2y^2+6=0\)
1.Ta co:
\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)
\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)
\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)
Dau '=' xay ra khi \(x=-1\)
Vay \(A_{min}=3\)khi \(x=-1\)
2c.
\(DK:x\ge\frac{1}{2}\)
\(\Leftrightarrow\text{ }2x+1+\sqrt{2x-1}=0\)
\(\Leftrightarrow2x-1+\sqrt{2x-1}+2=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}=0\)
Ma \(\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}>0\)
Vay PT vo nghiem
Tìm x, biết:
a. \(\sqrt{6-4x+x^2}-x=4\)
b. \(\sqrt{4x^2-4x+1}+\sqrt{2x-1}=0\)với \(x\ge\frac{1}{2}\)
a) ĐKXĐ: \(x\ge-4\)
a) Ta có: \(\sqrt{6-4x+x^2}=x+4\Rightarrow\left(x+4\right)^2=x^2-4x+6\)
\(\Rightarrow x^2+8x+16=x^2-4x+6\Rightarrow4x+10=0\Rightarrow x=-\frac{5}{2}\left(loại\right)\)
Vậy pt vô nghiệm
b) \(\sqrt{4x^2-4x+1}+\sqrt{2x-1}=0\Rightarrow\sqrt{\left(2x-1\right)^2}+\sqrt{2x-1}=0\)
\(\Leftrightarrow\sqrt{2x-1}\left(\sqrt{2x-1}+1\right)=0\Rightarrow x=\frac{1}{2}\)
1) Tìm x
a)\(x^4-4x^2+5=0\)
b)\(2x+5\sqrt{x}-3=0\)
a) Đặt \(x^2=t\) \(\left(t\ge0\right)\)
PT \(\Rightarrow t^2-4t+5=0\)
\(\Leftrightarrow t^2-4t+4+1=0\)
\(\Leftrightarrow\left(t-2\right)^2+1=0\) \(\Leftrightarrow\left(t-2\right)^2=-1\) (Vô lý)
Vậy phương trình vô nghiệm
b) ĐK: \(x\ge0\)
Đặt \(\sqrt{x}=t\) \(\left(t\ge0\right)\)
PT \(\Rightarrow2t^2+5t-3=0\)
\(\Leftrightarrow\left(2t-1\right)\left(t+3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=-3\left(loại\right)\\t=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4}\)
1. Tìm x , biết :
a) x^2 + 10x + 16 = 0
b) 4x^2 - 12x - 7 = 0
a) x2 + 10x + 16 = 0
<=> x2 + 2x + 8x + 16 = 0
<=> x( x + 2 ) + 8( x + 2 ) = 0
<=> ( x + 2 )( x + 8 ) = 0
<=> \(\orbr{\begin{cases}x+2=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-8\end{cases}}\)
b) 4x2 - 12x - 7 = 0
<=> 4x2 + 2x - 14x - 7 = 0
<=> 2x( 2x + 1 ) - 7( 2x + 1 ) = 0
<=> ( 2x + 1 )( 2x - 7 ) = 0
<=> \(\orbr{\begin{cases}2x+1=0\\2x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
a. \(x^2+10x+16=0\)
\(\Leftrightarrow x^2+8x+2x+16=0\)
\(\Leftrightarrow x\left(x+8\right)+2\left(x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-8\end{cases}}\)
b. \(4x^2-12x-7=0\)
\(\Leftrightarrow4x^2+2x-14x-7=0\)
\(\Leftrightarrow2x\left(2x+1\right)-7\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\2x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=7\\2x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}\)
Bài làm :
\(\text{a) }x^2+10x+16=0\)
\(\Leftrightarrow x^2+8x+2x+16=0\)
\(\Leftrightarrow x\left(x+8\right)+2\left(x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-8\end{cases}}\)
\(\text{b) }4x^2-12x-7=0\)
\(\Leftrightarrow4x^2+2x-14x-7=0\)
\(\Leftrightarrow2x\left(2x+1\right)-7\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\2x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=7\\2x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}.}\)
Câu 2: Tìm x biết:
a. \(\sqrt{\left(2x-3\right)^2}=7\)
b. \(\sqrt{64x-121}-\sqrt{25x-50}-\sqrt{4x-1}=20\)
c. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
a: \(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
a, \(\sqrt{\left(2x-3\right)^2}=7\\ \Rightarrow\left|2x-3\right|=7\\ \Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
c, \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\sqrt{x+3}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
Giúp mình giải mấy bài này với
Bài 1:Tìm X,biết
(X-2).(X+3)-(X-1).(X+1)=7
Bài 2
a. Tìm X,Y biết
4X^2+Y^2-4X+2Y-2=0
b. Cho a,b,c khác 0 và 1/a+1/b+1/c=0
C/m (a+b+c)^2 =a^2+b^2+c^2
Tìm x biết
a) (2x-3)2 - (x+5)2=0
b) 4x2-1-x(2x+1)=0
c)x(2x-7)-(4x-14)=0