Vd cho a=x-2010 vậy (2009-x) sao bằng (a+1)2 v mng?
A= (x+2009) .(x+2010)
chứng minh A chia hết cho 2 và x là số tự nhiên?
các bạn xem trong ba cách, cách nào đúng, chính xác, điểm cao,...
cách 1:
vì x là số tự nhiên nên x sẽ có 2 trường hợp
Trường hợp 1: x là số lẻ
x+2009 là số chẵn
x+ 2010 là số lẻ
( x+2009) chia hết cho 2 . (vì ko có dấu chia hết nên mình ghi như thế nha! những cái sau cũng thế)
suy ra: (x+2009).(x+2010) chia hết cho 2
Trường hợp 2: x là số chẵn
x+2009 là số lẻ
x+ 2010 là số chẵn
(x+2010) chia hết cho 2
suy ra: (x+2009). (x+2010) chia hết cho 2
vậy A chia hết cho 2
Cách 2:
vì x là số tự nhiên nên x sẽ có 2 dạng: 2.a hoặc 2.b +1
trường hợp 1:
A= (x+2009).(x+2010)
A=(2.a+2009).(2.a+2010)
A=(2.a+2009).(2.a+2.1005)
A=(2.a+2009).2.( a+1005)
suy ra:A chia hết cho 2
trường hợp 2:
A=(x+2009).(x+2010)
A=(2.b+1+2009).(2.b+1+2010)
A=(2.b+2010).(2.b+2011)
A=(2.b+2.1005).(2.b+2011)
A=2.(b+1005).(2.b+2011)
suy ra: A chia hết cho 2
vậy A chia hết cho 2
cách 3:
A=(x+2009).(x+2010)
đây là hai số tự nhiên liên tiếp
mà tích của hai số tự nhiên liên tiếp sẽ chia hết cho 2 vì một trong hai số có một số chẵn
vậy A chia hết cho 2
Ai giúp mình với,cô cho toàn bài khó.
B1:
a)Tìm x,y biết (x+y)^2=(x-1)(y+1)
b)Tìm x,y,z biết :9x^2+y^2+2z^2-18x+4z-6y +20=0
B2:
Cho x/a+y/b+z/c=1 và-a/x+b/y+c/z=0
C/m x^2/a^2 +y^2/b^2 +z^2/c^2=1
B3:
Tìm x
(2009-x)^2+(2009-x)(x-2010)+(x-2010)^2/(2009-x)^2-(2009-x)(x-2010)+(x-2010)^2=19/49
Bài 1: cho pt \(x^2-ax+a-1=0\) có 2 no x1, x2
Tính \(M=\dfrac{2x^2_1+x_1x_2+2x_1^2}{x^2_1x_2+x^2_2x_1}\)
Bài 2: cho a,b là no pt: \(30x^2-4x=2010\)
Tình \(N=\dfrac{30\left(a^{2010}+b^{2010}\right)-4\left(a^{2009}+b^{2009}\right)}{a^{2008}+b^{2008}}\)
Bài 2:
Vì a,b là nghiệm PT nên \(\left\{{}\begin{matrix}30a^2-4a=2010\\30b^2-4b=2010\end{matrix}\right.\)
\(\Rightarrow N=\dfrac{a^{2008}\left(30a^2-4a\right)+b^{2008}\left(30b^2-4b\right)}{a^{2008}+b^{2008}}\\ \Rightarrow N=\dfrac{a^{2008}\cdot2010+b^{2008}\cdot2010}{a^{2008}+b^{2008}}=2010\)
Bài 1:
Viét: \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=a-1\end{matrix}\right.\)
\(M=\dfrac{2x_1^2+x_1x_2+2x_2^2}{x_1^2x_2+x_1x_2^2}=\dfrac{2\left(x_1+x_2\right)^2-3x_1x_2}{x_1x_2\left(x_1+x_2\right)}=\dfrac{2a^2-3a+3}{a^2-a}\)
Tìm x thỏa mãn: x + (x + 1) + (x + 2) + … + 2009 + 2010 = 2010 A.-2010 B.-2008 C.0 D.-2009
1 cho x=2010.Tính giá trị của biểu thức A=\(X^{2010}-2009.x^{2009}-2009.x^{2007}-...-2009.x+1\)
Cho x=2010.Tính giá trị biểu thức :A=x2010-2009*x2009-2009*x2007-...-2009*x1
cho x=2010. tính giá trị của biểu thức:
A=\(x^{2010}-2009.x^{2009}-2009.x^{2007}-...-2009.x+1\)
- Ta có : \(2009=2010-1=x-1\)
- Thay x - 1 = 2009 vào biểu thức A ta được :
=> \(A=x^{2010}-\left(x-1\right)x^{2009}-\left(x-1\right)x^{2008}-...-\left(x-1\right)x+1\)
=> \(A=x^{2010}-x^{2010}+x^{2009}-x^{2009}+x^{2008}-...-x^2+x+1\)
=> \(A=x+1\)
- Thay x = 2010 vào biểu thức trên ta được :
\(A=2010+1=2011\)
cho 2 đa thức P(x)=1+x+x^x+x^3+....+x^2009+x^2010 và Q(x)=1-x+x^2-x^3+x^4+....-x^2009+x^2010 giá trị của biểu thức P(1/2)+Q(1/2) có dạng biểu diễn hữu tỉ là a/b a,b thuộc N a,b là 2 số nguyên tố cùng nhau chứng minh a chia hết cho 5
1.
Cho A = 8n+2 - 5n+2 + 8n - 5n
Chứng minh: A chia hết cho 65 và 120.
2.
Tìm GTNN của A = |x-2014| + |x-2015| + |x-2016|
3.
Cho x = 2010. Tìm giá trị của biểu thức:
A = x2010 - 2009 * x2009 - 2009 * x2008 - ... - 2009 * x + 1