Tam giác ABC. Phân giác AD, trung tuyến AM. Qua D kẻ đường thẳng song song với AB cắt AM ở I. BI cắt AC tại E. Chứng minh AB = AE
Cho tam giác ABC có phân giác AD, trung tuyến AM. QUa M kẻ đường thẳng song song với AB, cắt AD tại E. QUa D kẻ đường thẳng song song với AC, cắt AM tại K. Chứng minh tam giác AEK vuông
Cho tam giác ABC có AM là trung tuyến và điểm E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC, cắt AB ở D và cắt AM ở K. Qua E kẻ đường thẳng song song với AB, cắt AC ở F. Chứng minh CF =DK
Cho tam giác ABC, đường trung tuyến AM, điểm E thuộc MC, qua E kẻ đường thẳng song song với AC cắt AB ở D và cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F. Chứng minh CF=DK
Cho tam giác ABC, đường trung tuyến AM, điểm E thuộc MC, qua E kẻ đường thẳng song song với AC cắt AB ở D và cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F. Chứng minh CF=DK
Cho tam giác ABC, phân giác AD, qua D kẻ đường thẳng song song với AB cắt AC tại E. Qua E kẻ đường thẳng song song với BC cắt AB tại F
a) Chứng minh AE=BF
b) Kẻ phân giác ngoài tại A của tam giác ABC cắt DE tại G. Chứng minh rằng E là trung điểm của DG
c) Đường thẳng vuông góc với AD tại D cắt AB, AC lần lượt tại H, K. Chứng minh AH=2FB
d) Từ E kẻ đường thẳng song song với DK cắt AD tại I.Chứng minh H, I, G thẳng hàng
Bài toán 7 : Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM,
qua H kẻ đường thẳng song song với AB cắt AC tại D. Qua H kẻ đường thẳng
song song với AC cắt AB tại E.
1. Chứng minh rằng : AH = DE.
2. Chứng minh rằng : AM DE.
3. ABC cần có thêm điều kiện gì để tứ giác AEHD là hình vuông.
4. Cho AB = 6cm, AC = 8cm. Tính diện tích tứ giác AEMD.
Cm: a) Ta có: BA ⊥⊥AC (gt)
HD // AB (gt)
=> HD ⊥⊥AC => ˆHDA=900HDA^=900
Ta lại có: AC ⊥⊥AB (gt)
HE // AC (gt)
=> HE ⊥⊥AB => ˆHEA=900HEA^=900
Xét tứ giác AEHD có: ˆA=ˆAEH=ˆHDA=900A^=AEH^=HDA^=900
=> AEHD là HCN => AH = DE
b) Gọi O là giao điểm của AH và DE
Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => ˆOAD=ˆODAOAD^=ODA^ (1)
Xét t/giác ABC vuông tại A có AM là đường trung tuyến
-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => ˆMAC=ˆCMAC^=C^
Ta có: ˆB+ˆC=900B^+C^=900 (phụ nhau)
ˆC+ˆHAC=900C^+HAC^=900 (phụ nhau)
=> ˆB=ˆHACB^=HAC^ hay ˆB=ˆOADB^=OAD^ (2)
Từ (1) và (2) => ˆODA=ˆBODA^=B^
Gọi I là giao điểm của MA và ED
Xét t/giác IAD có: ˆIAD+ˆIDA+ˆAID=1800IAD^+IDA^+AID^=1800 (tổng 3 góc của 1 t/giác)
=> ˆAID=1800−(IAD+ˆIDA)AID^=1800−(IAD+IDA^)
hay ˆAID=1800−(ˆB+ˆC)=1800−900=900AID^=1800−(B^+C^)=1800−900=900
=> AM⊥DEAM⊥DE(Đpcm)
c) (thiếu đề)
cho tam giác abc , đường trung tuyến AM , E thuộc MC . Qua E kẻ đường thẳng song song với ac và cắt ab ở d cắt am ở k . qua e kẻ đường thẳng song song với ab cắt ac ở f . chúng minh : cf=dk
giúp mình ;-; Cho tam giác ABC có đường trung tuyến AM. Gọi I là trung điểm AM. Kéo dài BI cắt AC tại E. Qua M kẻ đường thẳng song song với BI cắt AC tại F
Chứng minh rằng:
a/ AE = EF = FC.
b/ BI = 3.IE
a: Xét ΔBEC có
M là trung điểm của BC
MF//BE
Do đó: F là trung điểm của CE
Suy ra: FE=CF(1)
Xét ΔAMF có
I là trung điểm của AM
IE//MF
Do đó: E là trung điểm của AF
Suy ra: AE=EF(2)
Từ (1) và (2) suy ra AE=FE=CF
Cho tam giác ABC cân tại A. Tia phân giác góc BAC cắt cạnh BC tại M
a) Chứng minh ∆ A M B = ∆ A M C .
b) Kẻ M E ⊥ A B ( E ∈ A B ) , M F ⊥ A C ( F ∈ A C ) . Chứng minh tam giác AEF cân.
c) Chứng minh A M ⊥ E F .
d) Qua B kẻ đường thẳng song song với AC cắt đường thẳng FM tại I Chứng minh BE = BI