Bài 9: Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thủy Kiều

Bài toán 7 : Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM, 
qua H kẻ đường thẳng song song với AB cắt AC tại D. Qua H kẻ đường thẳng 
song song với AC cắt AB tại E.
1. Chứng minh rằng : AH = DE.
2. Chứng minh rằng : AM DE.
3. ABC cần có thêm điều kiện gì để tứ giác AEHD là hình vuông.
4. Cho AB = 6cm, AC = 8cm. Tính diện tích tứ giác AEMD.

Ngô Ngọc Tâm Anh
14 tháng 12 2021 lúc 15:28

Cm: a) Ta có: BA ⊥⊥AC (gt)

                        HD // AB (gt)

=> HD ⊥⊥AC => ˆHDA=900HDA^=900

Ta lại có: AC ⊥⊥AB (gt)

   HE // AC (gt)

=> HE ⊥⊥AB => ˆHEA=900HEA^=900

Xét tứ giác AEHD có: ˆA=ˆAEH=ˆHDA=900A^=AEH^=HDA^=900

=> AEHD là HCN => AH = DE

b) Gọi O là giao điểm của AH và DE

Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => ˆOAD=ˆODAOAD^=ODA^ (1)

Xét t/giác ABC vuông tại A có AM là đường trung tuyến

-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => ˆMAC=ˆCMAC^=C^

Ta có: ˆB+ˆC=900B^+C^=900 (phụ nhau)

  ˆC+ˆHAC=900C^+HAC^=900 (phụ nhau)

=> ˆB=ˆHACB^=HAC^ hay ˆB=ˆOADB^=OAD^ (2) 
Từ (1) và (2) => ˆODA=ˆBODA^=B^

Gọi I là giao điểm của MA và ED

Xét t/giác IAD có: ˆIAD+ˆIDA+ˆAID=1800IAD^+IDA^+AID^=1800 (tổng 3 góc của 1 t/giác)

=> ˆAID=1800−(IAD+ˆIDA)AID^=1800−(IAD+IDA^)

hay ˆAID=1800−(ˆB+ˆC)=1800−900=900AID^=1800−(B^+C^)=1800−900=900

=> AM⊥DEAM⊥DE(Đpcm)

c) (thiếu đề)


Các câu hỏi tương tự
Nam Trần
Xem chi tiết
Hương Trà Lê
Xem chi tiết
Lý Quang Huy
Xem chi tiết
TPPL Phong Lưu
Xem chi tiết
HỒ SĨ SÂM
Xem chi tiết
Nam Trần
Xem chi tiết
Lan Hoàng
Xem chi tiết
Nam Trần
Xem chi tiết
Miu
Xem chi tiết