Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Kiều Trinh
Xem chi tiết
Akai Haruma
19 tháng 7 2021 lúc 16:49

Lời giải:

a. \(\sqrt{6-2\sqrt{5}}=\sqrt{5-2\sqrt{5}.\sqrt{1}+1}=\sqrt{(\sqrt{5}-1)^2}=\sqrt{5}-1\)

b. \(\sqrt{7-4\sqrt{3}}=\sqrt{4-2\sqrt{4}.\sqrt{3}+3}=\sqrt{(\sqrt{4}-\sqrt{3})^2}=\sqrt{4}-\sqrt{3}=2-\sqrt{3}\)

c.

\(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}-\sqrt{4-4\sqrt{2}+2}\)

\(=\sqrt{(\sqrt{2}-1)^2}-\sqrt{(\sqrt{4}-\sqrt{2})^2}\)

\(=|\sqrt{2}-1|-|\sqrt{4}-\sqrt{2}|=\sqrt{2}-1-(2-\sqrt{2})=2\sqrt{2}-3\)

d.

\(=\sqrt{13+30\sqrt{2+\sqrt{(\sqrt{8}+1)^2}}}=\sqrt{13+30\sqrt{2+\sqrt{8}+1}}\)

\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\sqrt{(\sqrt{2}+1)^2}}\)

\(=\sqrt{13+30(\sqrt{2}+1)}=\sqrt{43+30\sqrt{2}}=\sqrt{18+2\sqrt{18.25}+25}\)

\(=\sqrt{(\sqrt{18}+\sqrt{25})^2}=\sqrt{18}+\sqrt{25}=5+3\sqrt{2}\)

 

 

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 20:17

a) \(\sqrt{6-2\sqrt{5}}=\sqrt{5}-1\)

b) \(\sqrt{7-4\sqrt{3}}=2-\sqrt{3}\)

c) \(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{2}-1-2+\sqrt{2}=-3+2\sqrt{2}\)

d) Ta có: \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{13+30\sqrt{2+1+2\sqrt{2}}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{43+30\sqrt{2}}\)

\(=5+3\sqrt{2}\)

Nguyễn Dương Thành Đạt
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2021 lúc 21:26

a) Ta có: \(\sqrt{2}\left(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\right)\)

\(=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)

\(=\sqrt{5}-1-\sqrt{5}-1=-2\)

b) Ta có: \(\sqrt{13+30\sqrt{2}+\sqrt{9+4\sqrt{2}}}\)

\(=\sqrt{13+30\sqrt{2}+2\sqrt{2}+1}\)

\(=\sqrt{14+32\sqrt{2}}\)

c) Ta có: \(\sqrt{6+2\sqrt{5}-\sqrt{13+\sqrt{48}}}\)

\(=\sqrt{6+2\sqrt{5}-2\sqrt{3}-1}\)

\(=\sqrt{5+2\sqrt{5}-2\sqrt{3}}\)

Phương Anh Nguyễn Thị
Xem chi tiết
Do What You Love
1 tháng 7 2017 lúc 8:27

a,\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}\\ =\sqrt{13+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{43+30\sqrt{2}}=5+3\sqrt{2}\)

Trần Anh Tuấn
1 tháng 7 2017 lúc 10:13

b, \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)

\(\Leftrightarrow\sqrt{5-\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}}+\sqrt{3+\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}}\)

\(\Leftrightarrow\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}\)

\(\Leftrightarrow\sqrt{5-2\sqrt{3}-1}+\sqrt{3+2\sqrt{3}+1}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(\Leftrightarrow\sqrt{3}-1+\sqrt{3}+1\)

\(\Leftrightarrow2\sqrt{3}\)

Trần Anh Tuấn
1 tháng 7 2017 lúc 10:41

d,\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)

\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2.\sqrt{2}\sqrt{3}+2}\)

\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)

\(\Leftrightarrow3-2\Leftrightarrow1\)

Nguyễn Minh Anh
Xem chi tiết
Tiểu Ma Bạc Hà
14 tháng 7 2019 lúc 22:34

\(\sqrt{24+8\sqrt{5}}+\) \(\sqrt{9-4\sqrt{5}}=\) \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.2+4}\) + \(\sqrt{5-2\sqrt{5}.2+4}\)

\(\sqrt{\left(2\sqrt{5}+2\right)^2}+\) \(\sqrt{\left(\sqrt{5}-2\right)^2}\) = \(2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)

==================================================

\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) = \(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)\(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)

===========================================================

\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)

\(\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\) \(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)

================================================================

tUấN hÙnG
Xem chi tiết
THN
Xem chi tiết
wary reus
Xem chi tiết
Trần Việt Linh
28 tháng 7 2016 lúc 10:15

a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{20-2\cdot3\cdot\sqrt{20}+9}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{20}+3}}\)

\(=\sqrt{5-\sqrt{6-\sqrt{20}}}\)

\(=\sqrt{5-\sqrt{5-2\sqrt{5}+1}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}+1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}-1}\)

\(=\sqrt{4-\sqrt{5}}\)

c)\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)

\(=3-2=1\)

d)\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)

\(=\sqrt{5-\sqrt{12+2\cdot\sqrt{12}+1}}+\sqrt{3+\sqrt{12+2\cdot\sqrt{12}+1}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}+\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}\)

\(=\sqrt{5-\sqrt{12}-1}+\sqrt{3+\sqrt{12}+1}\)

\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)

\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{4+2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}-1+\sqrt{3+1}\)

\(=2\sqrt{3}\)

 

 

 

 

Thai Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 8 2022 lúc 23:54

b: \(=\dfrac{\sqrt{5}+1}{\sqrt{5}-1}+\dfrac{\sqrt{5}-1}{\sqrt{5}+1}\)

\(=\dfrac{6+2\sqrt{5}+6-2\sqrt{5}}{4}=\dfrac{12}{4}=3\)

c: \(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\)

e: \(=\dfrac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{\sqrt{2}\cdot\sqrt{3+\sqrt{3}-1}}{\sqrt{3}-1}=\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}-1}=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\)

\(=\dfrac{4-2\sqrt{3}}{2}=2-\sqrt{3}\)

Nguyễn Ngọc Nhã Hân
Xem chi tiết
Aki Tsuki
30 tháng 6 2018 lúc 12:58

a/ \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{13+30\sqrt{2+\sqrt{1+2\cdot1\cdot2\sqrt{2}+8}}}\)

\(=\sqrt{13+30\sqrt{2+\sqrt{\left(1+2\sqrt{2}\right)^2}}}\)

\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\)

\(=\sqrt{25+2\cdot5\cdot3\sqrt{2}+18}=\sqrt{\left(5+3\sqrt{2}\right)^2}=5+3\sqrt{2}\)

Aki Tsuki
30 tháng 6 2018 lúc 13:07

b/ \(\left(\sqrt{3}-\sqrt{2}\right)\cdot\sqrt{5+2\sqrt{6}}=\sqrt{3\left(5+2\sqrt{6}\right)}-\sqrt{2\left(5+2\sqrt{6}\right)}\)

\(=\sqrt{15+6\sqrt{6}}-\sqrt{10+4\sqrt{6}}\)

\(=\sqrt{\left(3+\sqrt{6}\right)^2}-\sqrt{\left(2+\sqrt{6}\right)^2}\)

\(=3+\sqrt{6}-2-\sqrt{6}=1\)

c/ \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)

\(=\sqrt{5-\sqrt{\left(1+2\sqrt{3}\right)^2}}+\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)^2}}\)

\(=\sqrt{5-1-2\sqrt{3}}+\sqrt{3+1+2\sqrt{3}}\)

\(=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(=\sqrt{3}-1+1+\sqrt{3}=2\sqrt{3}\)

Aki Tsuki
30 tháng 6 2018 lúc 13:16

d/ \(\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)

\(=\sqrt{1+\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)^2}}}+\sqrt{1-\sqrt{3-\sqrt{\left(2\sqrt{3}-1\right)^2}}}\)

\(=\sqrt{1+\sqrt{4+2\sqrt{3}}}+\sqrt{1-\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{1+\sqrt{\left(\sqrt{3}+1\right)^2}}+\sqrt{1-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{1+\sqrt{3}+1}+\sqrt{1-\sqrt{3}+1}\)

\(=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)