Tim x∈Z thoa man 33n+1=9n+2
tim cac so m,n,p thoa man : m+n+p+8=2canm-1 + 4cann-2 +6canp-3
tim cac so x,y,z thoa man :canx+cany-1 +canz-2 = 1/2(x+y+z)
tim cac so x,y,z thoa man :x+y+z+4=2canx-2 +4cany-3+6canz-5
a)Tim tat ca cac so nguyen duong x, y , z thoa man: \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}\)la so huu ti, dong thoi x2 + y2+ z2 la so nguyen to.
b) Tim so tu nhien x, y thoa man: x(1+x+x2) = y(y-1).
Cho 5/(√x-2) ∈ Z. Tim x∈N thoa man.
Ta có : `(5)/(\sqrt{x}-2)\in Z`
`=>\sqrt{x}-2 \in Ư_(5)`
`=>\sqrt{x}-2\in {1;-1;5}`
TH1 : `\sqrt{x}-2=-1`
`<=>\sqrt{x}=1`
`<=>(\sqrt{x})^2=1^2`
`<=>x=1`
TH2 : `\sqrt{x}-2=1`
`<=>\sqrt{x}=3`
`<=>(\sqrt{x})^2=3^2`
`<=>x=9`
TH3: `\sqrt{x}-2=5`
`<=>\sqrt{x}=7`
`<=>(\sqrt{x})^2=7^2`
`<=>x=49`
Vậy với `x=1;9;49` thì thoả mãn yêu cầu bài ra
`5/(sqrt x -2) in ZZ`.
`<=> 5 vdots (sqrt x-2)`
`=> sqrt x -2 in Ư(5)`.
Do `sqrt x -2 >=-2` nên:
`@ sqrt x - 2 = -1 <=> x = 1`.
`@ sqrt x - 2 = 1 <=> x =9`
`@ sqrt x- 2=5<=> x = 49`
Vậy `x = 1; 9; 49` thì biểu thức trên nguyên
Tim xyz thoa man
căn x +căn của y-1 +căn của z-2=1phần 2 nhân (x+y+z)
tim cac so nguyen x,y,z thoa man dieu kien sau
x^2=y-1
y^2=z-1
z^2=x-1
tim x,y,z,t thoa man x^2+y^2+z^2+t^2=x(y+z+t)
tim x;y;z thoa man :5x-3y/4=2z-3x/5=9y-10z/7;2y-z=132
tim x;y;z thoa man :x+3y/19=3y+9z/114=5z+15x;x+y+2z=-31
Cho 3 so x, y, z thoa man cac he thuc: \(\left(z-1\right)x-y=1\) va \(x+zy=2\)
Chmr: \(\left(2x-y\right)\left(z^2-z+1\right)=7\) va tim tat ca cac so nguyen x, y, z thoa man cac he thuc tren.
Tim x∈Z thoa man 33n+1 = 9n+2
\(3^{3n+1}=9^{n+2}\)
\(\Rightarrow3^{3n+1}=3^{2\left(n+2\right)}\)
\(\Rightarrow3n+1=2n+4\)
\(\Rightarrow3n-2n=4-1\)
\(\Rightarrow n=3\)
Vậy n=3 thì \(3^{3n+1}=9^{n+2}\)