cho x>0,y>0 thõa mãn x12+x22=1.Tìm giá trị nhỏ nhất của biểu thức A=\(\dfrac{-2xy}{1+xy}\)
cho x>0, y>0 thỏa mãn x^2+y^2 =1. Tìm giá trị nhỏ nhất của biểu thức A=-2xy/1+xy
Áp dụng bđt Cô-si \(1=x^2+y^2\ge2xy\)
\(\Rightarrow xy\le\frac{1}{2}\)
Ta có \(A=\frac{-2xy}{1+xy}\ge\frac{-\frac{2.1}{2}}{1+\frac{1}{2}}=-\frac{2}{3}\)
\("="\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
Cho phương trình x 2 + (m – 2)x – m + 1 =0
c) Tìm giá trị nhỏ nhất của biểu thức A = x 1 2 + x 2 2 - 6 x 1 x 2
c) Theo hệ thức Vi- et ta có:
A = x 1 2 + x 2 2 - 6 x 1 x 2 = x 1 + x 2 2 - 8 x 1 x 2
= 2 - m 2 - 8(-m + 1) = m 2 - 4m + 4 + 8m - 8
= m 2 + 4m - 4 = m + 2 2 - 8
Ta có: (m + 2)2 ≥ 0 ∀ m
⇒ m + 2 2 - 8 ≥ -8 ∀ m ⇔ A ≥ -8 ∀ m
Dấu bằng xảy ra khi m + 2 2 = 0 ⇔ m= -2
Vậy GTNN của A là -8, đạt được khi m = -2
Cho hai số thực x và y thỏa mãn x, y > 0 và xy = 1.
Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{1}{(1+x)^2} + \dfrac{1}{(1+y)^2}\)
A>=1/(1+xy)=1/2
Dấu = xảy ra khi x=y=1
Cho x>0, y>0 thỏa mãn x2+y2=1. Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{-2xy}{1+xy}\)
Cho x,y dương thỏa mãn : \(xy+1\le y\).Tìm giá trị nhỏ nhất của biểu thức :
\(Q=\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
\(y\ge xy+1\ge2\sqrt{xy}\Rightarrow\sqrt{\dfrac{y}{x}}\ge2\Rightarrow\dfrac{y}{x}\ge4\)
\(Q=\dfrac{1-\dfrac{2y}{x}+2\left(\dfrac{y}{x}\right)^2}{\dfrac{y}{x}+\left(\dfrac{y}{x}\right)^2}\)
Đặt \(\dfrac{y}{x}=a\ge4\)
\(Q=\dfrac{2a^2-2a+1}{a^2+a}=\dfrac{2a^2-2a+1}{a^2+a}-\dfrac{5}{4}+\dfrac{5}{4}=\dfrac{\left(a-4\right)\left(3a-1\right)}{4\left(a^2+1\right)}+\dfrac{5}{4}\ge\dfrac{5}{4}\)
\(Q_{min}=\dfrac{5}{4}\) khi \(a=4\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)
Cho phương trình x 2 - 2 m + 1 x + 2 m 2 - 2 = 0 Tìm giá trị của m để phương trình có hai nghiệm phân biệt x 1 ; x 2 thỏa mãn biểu thức A = x 1 2 + x 2 2 + x 1 x 2 đạt giá trị nhỏ nhất.
A. m=1
B. Không tồn tại m.
C. m=-2
D. Có vô số giá trị m.
Cho phương trình bậc hai (ẩn ): x 2 - (m + 1)x + m – 2 = 0
b) Tìm m để biểu thức A = x 1 2 + x 2 2 - 6 x 1 x 2 đạt giá trị nhỏ nhất.
b) Theo định lí Vi-et ta có:
x 1 + x 2 = m + 1 và x 1 . x 2 = m - 2
Do đó A = x 1 2 + x 2 2 - 6 x 1 x 2 = x 1 + x 2 2 - 8 x 1 x 2
= m + 1 2 - 8(m – 2) = m 2 + 2m + 1 – 8m + 16
= m 2 - 6m + 17 = m - 3 2 + 8 ≥ 8
Vậy giá trị nhỏ nhất của A bẳng 8 khi m – 3 = 0 hay m = 3.
cho x, y là 2 số thực thõa mãn: x2 + 2y2 + 2xy + 7x +7y + 10 = 0
tìn giá trị nhỏ nhất và giá trị lớn nhất của biểu thức : A = x + y +1
Cho các số thực dương x,y thỏa mãn x + \(\dfrac{1}{y}\) ≤ 1 .Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\)
Đặt \(\dfrac{x}{y}=a\Rightarrow0< a\le\dfrac{1}{4}\)
\(P=\dfrac{\left(\dfrac{x}{y}\right)^2-\dfrac{2x}{y}+2}{\dfrac{x}{y}+1}=\dfrac{a^2-2a+2}{a+1}=\dfrac{4a^2-8a+8}{4\left(a+1\right)}=\dfrac{4a^2-13a+3+5\left(a+1\right)}{4\left(a+1\right)}\)
\(P=\dfrac{5}{4}+\dfrac{\left(1-4a\right)\left(3-a\right)}{4\left(a+1\right)}\ge\dfrac{5}{4}\)
Dấu "=" xảy ra khi \(a=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)