Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn đĂNG đỨC
Xem chi tiết
Lee Kio
6 tháng 4 2017 lúc 23:26

a) Vì \(\Delta ABC\)là tam giác vuông tại A nên theo định lí Pytago ta có:

BC2=AC2+AB2

hay AC=8cm, AB=6cm

nên BC2=82+62

=>BC2=100

=>BC=10

b)Xét \(\Delta BAC\)và \(\Delta BED\)có:

CB=BD (gt)

\(\widehat{B}\)chung

\(\widehat{A}\)=\(\widehat{E}\)(=\(90^0\))

=>\(\Delta BAC=\Delta BED\)(cạnh huyền- góc nhọn)

Phương Trâm
Xem chi tiết
công đạt
13 tháng 5 2019 lúc 11:16

a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:

\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)

Ủng hộmi nha

Mạnh Lê
13 tháng 5 2019 lúc 11:20

A B C D E

a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm

\(\Rightarrow BC^2=AB^2+AC^2\)

     \(BC^2=6^2+8^2\)

     \(BC^2=36+64\)

    \(BC^2=100\)

    \(BC=10\)

Suy ra cạnh BC = 10cm

b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:

      \(\widehat{BAC}=\widehat{DEB}=90^o\)

         \(\widehat{B}\)chung

       \(BD=BC\left(gt\right)\)

\(\Rightarrow\Delta BAC=\Delta BED\)

Vậy...     

Thanh Thủy Vũ
Xem chi tiết
Nguyễn Quang Minh
Xem chi tiết
Nguyễn Thị Kim Ngân
14 tháng 5 2022 lúc 22:31

a) Xét △ABC vuông tại A có:

BC² = AC² + AB² (ĐL Pytago)

BC² = 8² + 6²

BC² = 100

BC = 10 cm

Vậy BC = 10 cm

b) Xét △ABD và △EBD có:

góc BAD = góc BED (=90°)

BD chung

góc ABD = góc EBD (BD là tia p/g của góc ABC)

=> △ABD = △EBD (ch-gn)

c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á

 

Nguyễn Quang Minh
14 tháng 5 2022 lúc 21:06

Câu 3 là phần c nha

 

Thêu Mai
23 tháng 2 2023 lúc 18:55

a) Xét △ABC vuông tại A có:

BC² = AC² + AB² (ĐL Pytago)

BC² = 8² + 6²

BC² = 100

BC = 10 cm

Vậy BC = 10 cm

b) Xét △ABD và △EBD có:

góc BAD = góc BED (=90°)

BD chung

góc ABD = góc EBD (BD là tia p/g của góc ABC)

=> △ABD = △EBD (ch-gn)

 cre baji

thi hue nguyen
Xem chi tiết
Lâm Nguyễn Nhựt Minh
Xem chi tiết
nguyễn kim ngân
Xem chi tiết
Dương công việt anh
Xem chi tiết
lilith.
Xem chi tiết

a: Xét ΔBAE và ΔBDE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBAE=ΔBDE

b: Xét ΔBFC có

BH là đường cao
BH là đường phân giác

Do đó: ΔBFC cân tại B

c: Ta có: ΔBFC cân tại B

=>BF=BC

Xét ΔBDF và ΔBAC có

BD=BA

\(\widehat{DBF}\) chung

BF=BC

Do đó: ΔBDF=ΔBAC

=>\(\widehat{BDF}=\widehat{BAC}=90^0\)

Ta có: ΔBAE=ΔBDE

=>\(\widehat{BAE}=\widehat{BDE}\)

mà \(\widehat{BAE}=90^0\)

nên \(\widehat{BDE}=90^0\)

mà \(\widehat{BDF}=90^0\)

và DE,DF có điểm chung là D

nên D,E,F thẳng hàng