Tính nhanh : \(2015^{\left(196-1^2\right).\left(196-2^2\right)....\left(196-14^2\right)}\)
cho x,y,z >0 và x+y+z=25 và \(x^2+y^2+z^2\) =233
giá trị của : \(x\sqrt{\frac{\left(196+y^2\right)\left(196+z^2\right)}{196+x^2}}+y\sqrt{\frac{\left(196+x^2\right)\left(196+z^2\right)}{196+y^2}}+z\sqrt{\frac{\left(196+y^2\right)\left(196+x^2\right)}{196+z^2}}\) là:
mình trả lời rồi đó :
,hzgb3fewniurse8w23uhxu9ew8ahbg18yhr7tgfse7w6hb ch
cho x,y,z >0 và \(x+y+z=25\) và \(x^2+y^2+z^2=233\)
giá trị cùa A = \(x\sqrt{\frac{\left(196+y^2\right)\left(196+z^2\right)}{196+x^2}}+y\sqrt{\frac{\left(196+x^2\right)\left(196+z^2\right)}{196+y^2}}+z\sqrt{\frac{\left(196+x^2\right)\left(196+y^2\right)}{196+z^2}}\) là ?
Bài 1: Cho \(A=\frac{196}{197}+\frac{197}{198}\) và \(B=\frac{196+197}{197+198}\). Trong 2 số A và B, số nào lớn hơn?
Bài 2: Tính nhanh: \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\)
Bài 1:
Vì \(\frac{196}{197+198}< \frac{196}{197};\frac{197}{197+198}< \frac{197}{198}\)
Nên A = \(\frac{196}{197}+\frac{197}{198}>\frac{196}{197+198}+\frac{197}{197+198}=\frac{196+197}{197+198}=B\)
Vậy A > B
Tìm x biết
\(\left(6x+5\right)^2\left(3x+2\right)\left(x+1\right)=196\)
nhân 2 vế cho 12 ta được
(6x+5)2(3x+2)(12x+12)=2352
bạn nhóm cho có phần chung r làm như mấy bài trước nha :))
Tính \(M=1-\frac{5}{\sqrt{196}}-\frac{5}{\left(2\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
\(M=1-\dfrac{5}{14}-\dfrac{5}{84}-\dfrac{5}{204}-\dfrac{5}{374}\)
\(=\dfrac{84-30-5}{84}-\dfrac{5}{204}-\dfrac{5}{374}\)
\(=\dfrac{49}{84}-\dfrac{5}{204}-\dfrac{5}{374}\)
\(=\dfrac{7}{12}-\dfrac{5}{204}-\dfrac{5}{374}\)
\(=\dfrac{7\cdot17-5}{204}-\dfrac{5}{374}=\dfrac{19}{34}-\dfrac{5}{374}=\dfrac{204}{374}=\dfrac{6}{11}\)
Tính \(M=1-\frac{5}{\sqrt{196}}-\frac{5}{\left(2\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
a, 1 + \(\dfrac{1}{2}\).(1+2)+\(\dfrac{1}{3}\).(1+2+3)+...+\(\dfrac{1}{16}\).(1+2+3+...+16)
b, \(\left[\left(\dfrac{2}{196}-\dfrac{3}{386}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]\):\(\left[\left(\dfrac{7}{1931}+\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
c, \(\dfrac{\dfrac{1}{2}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\)x\(\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}\)+\(\dfrac{5}{8}\)
d, \(\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}\)+\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)
a: \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{16}\left(1+2+3+...+16\right)\)
\(=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{16}\cdot\dfrac{16\cdot17}{2}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{17}{2}\)
\(=\dfrac{1}{2}\left(2+3+4+...+17\right)\)
\(=\dfrac{1}{2}\cdot152=76\)
b: Sửa đề: \(\left[\left(\dfrac{2}{193}-\dfrac{3}{386}\right)\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}+\dfrac{11}{3862}\right)\cdot\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left(\dfrac{2}{193}\cdot\dfrac{193}{17}-\dfrac{3}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right):\left[\dfrac{7}{1931}\cdot\dfrac{1931}{25}+\dfrac{11}{3862}\cdot\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left(\dfrac{2}{17}-\dfrac{3}{34}+\dfrac{33}{34}\right):\left(\dfrac{7}{25}+\dfrac{11}{50}+\dfrac{9}{2}\right)\)
\(=\left(\dfrac{2}{17}+\dfrac{30}{34}\right):\dfrac{14+11+225}{50}\)
\(=1\cdot\dfrac{50}{250}=1\cdot\dfrac{1}{5}=\dfrac{1}{5}\)
c: Sửa đề: \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{1\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{\dfrac{3}{4}\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{1}{2}\cdot\dfrac{3}{4}+\dfrac{5}{8}=\dfrac{3}{8}+\dfrac{5}{8}=1\)
d: \(\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)
\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{8}-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{4}+\dfrac{3}{6}-\dfrac{3}{10}}\)
\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{3\left(\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}\right)}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{2}\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}\right)}\)
\(=\dfrac{1}{3}+1:\dfrac{3}{2}=1\)
Tính bằng cách hợp lý: M = \(1-\frac{5}{\sqrt{196}}-\frac{5}{\left(2.\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
tính hợp lý
a, A = \(\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)
b, M = 1 - \(\dfrac{5}{\sqrt{196}}\) - \(\dfrac{5}{\left(2\sqrt{21}\right)^2}\) - \(\dfrac{\sqrt{25}}{204}\) - \(\dfrac{\left(\sqrt{5}\right)^2}{374}\)
a: \(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)
\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}\)
\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)
b: \(M=1-\dfrac{5}{\sqrt{196}}-\dfrac{5}{\left(2\sqrt{21}\right)^2}-\dfrac{\sqrt{25}}{204}-\dfrac{\left(\sqrt{5}\right)^2}{374}\)
\(=1-\dfrac{5}{14}-\dfrac{5}{84}-\dfrac{5}{204}-\dfrac{5}{374}\)
\(=1-5\left(\dfrac{1}{14}+\dfrac{1}{84}+\dfrac{1}{204}+\dfrac{1}{374}\right)\)
\(=1-5\left(\dfrac{1}{2\cdot7}+\dfrac{1}{7\cdot12}+\dfrac{1}{12\cdot17}+\dfrac{1}{17\cdot22}\right)\)
\(=1-\left(\dfrac{5}{2\cdot7}+\dfrac{5}{7\cdot12}+\dfrac{5}{12\cdot17}+\dfrac{5}{17\cdot22}\right)\)
\(=1-\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}\right)\)
\(=1-\left(\dfrac{1}{2}-\dfrac{1}{22}\right)\)
\(=1-\dfrac{11-1}{22}=1-\dfrac{10}{22}=\dfrac{12}{22}=\dfrac{6}{11}\)