TÌM NGH
1) A(x)=(5x-2)-(3x+12)
2) B(x)=2+x2
HELP ME
Cho 2 đa thức : f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2
g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2
a) Tìm h(x) = f(x) - g(x)
b) Tìm nghiệm của đa thức h(x)
HELP ME!!!THANKS CÁC CẬU NHIỀU LẮM Ạ!!
h(x)=5x+1
nghiệm_của_đa_thức_h(x)_là_-1/5
Cho 2 đa thức : f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2
g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2
a) Tìm h(x) = f(x) - g(x)
b) Tìm nghiệm của đa thức h(x)
HELP ME!!!THANKS CÁC CẬU NHIỀU LẮM Ạ!!
a)h(x)=f(x)-g(x)
=(2x3 +3x2 -2x +3)-(2x3 +3x2 -7x +2)
=2x3 + 3x2 - 2x +3 - 2x3 -3x2 + 7x -2
=5x+1
b)h(x)=5x+1=0
=>5x=-1
x=\(\frac{-1}{5}\)
Tìm x ∈ Z sao cho:
a. (3x + 4) ⋮ (x – 3) (x ≠ 3)
b. (x2 + 3x – 13) ⋮ (x + 3) (x ≠ -3)
c. (x2 + 3) ⋮ (x -1) (x ≠ 1)
d. (x2 + 2x – 11) ⋮ (x + 2) (x ≠ -2)
help me plz
1 Tìm GTNN của
M=x^2-3x+5
N=2x^2+3x
P=3x^2+5x
2 Tìm GTLN của
A=-x^2-5x+3
B=-2x^2+3x
HELP ME
Câu 1:
\(M=x^2-3x+5\)
\(M=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}\)
\(M=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu = xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min M = 11/4 khi x=3/2
b)\(N=2x^2+3x\)
\(N=2\left(x^2+\frac{3}{2}x\right)\)
\(N=2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)-\frac{9}{8}\)
\(N=2\left(x+\frac{3}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
Dấu = xảy ra khi \(x+\frac{3}{4}=0\Rightarrow x=-\frac{3}{4}\)
Vậy MIn N = -9/8 khi x=-3/4
c)Tự làm nha
Ta có : x2 - 3x + 5
= x2 - 2.x.\(\frac{3}{2}\) + \(\frac{3}{2}^2\) + \(\frac{11}{4}\)
= \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\in R\)
Nên : \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\) \(\ge\frac{11}{4}\forall x\in R\)
Vậy GTNN của biểu thức là : \(\frac{11}{4}\) khi \(x=\frac{3}{2}\)
Câu 2:
a)\(A=-x^2-5x+3\)
\(A=-\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{37}{4}\)
\(A=\frac{37}{4}-\left(x+\frac{5}{2}\right)^2\le\frac{37}{4}\)
Dấu = xảy ra khi \(x+\frac{5}{2}=0\Rightarrow x=-\frac{5}{2}\)
Vậy Max A = 37/4 khi x=-5/2
b)\(B=-2x^2+3x\)
\(B=-2\left(x^2-\frac{3}{2}x\right)\)
\(B=-2\left(x^2-2.\frac{3}{4}+\frac{9}{16}\right)+\frac{9}{8}\)
\(B=\frac{9}{8}-2\left(x-\frac{3}{4}\right)^2\le\frac{9}{8}\)
Dấu = xảy ra khi \(x-\frac{3}{4}=0\Rightarrow x=\frac{3}{4}\)
Vậy Max B=9/8 khi x=3/4
Bài 7. Tìm x,biết:
a) x-3x2=0 e) 5x(3x-1)+x(3x-1)-2(3x-1)=0
b) (x+3)2-x(x-2)=13 c) (x-4)2-36=0
d) x2-7x+12=0 g) x2-2018x-2019=0
Bài 8. Tìm x, biết
a) (2x-1)2=(x+5)2 b) x2-x+1/4
c) 4x4-101x2+25=0 d) x3-3x2+9x-91=0
Tìm x, biết:
a) 3x(x-1)^2-3x(x-5)-2=0
b)x^3-x^2-x+1=0
c)2x^2 - 5x - 7=0
help me. Mai mik hok.
Bài 1. Tìm x, biết
a) (x+4)2-x2(x+12)=16
c) (x+3)3-x(3x+1)2+(2x+1)(4x2-2x+1)=28
d) (x-2)3-(x+5)(x2-5x+25)-6x2=11
Bài 2. Rút gọn các biểu thức sau:
A = (x+1)3+(x-1)3
B = (x-3)3-(x+3)(x2-3x+9)+(3x-1)(3x+1)
Bài 2:
a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)
\(=2x^3+6x\)
b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
\(=27x-55\)
Tìm x, biết :
a) (x+4)2-x2(x+12)=16
c) (x+3)3-x(3x+1)2+(2x+1)(4x2-2x+1)=28
d) (x-2)3-(x+5)(x2-5x+25)-6x2=11
c: Ta có: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)
\(\Leftrightarrow3x^2+26x=0\)
\(\Leftrightarrow x\left(3x+26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)
\(a,\Leftrightarrow x^2+8x+16-x^3-12x^2=16\\ \Leftrightarrow x^3+11x^2-8x=0\\ \Leftrightarrow x\left(x^2+11x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+11x-8=0\left(1\right)\end{matrix}\right.\\ \Delta\left(1\right)=121+32=153\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11-3\sqrt{17}}{2}\\x=\dfrac{-11+3\sqrt{17}}{2}\end{matrix}\right.\\ S=\left\{0;\dfrac{-11-3\sqrt{17}}{2};\dfrac{-11+3\sqrt{17}}{2}\right\}\)
\(c,\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\\ \Leftrightarrow3x^2+26x=0\\ \Leftrightarrow x\left(3x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\\ d,\Leftrightarrow x^3-6x^2+12x-8-x^3-125-6x^2=11\\ \Leftrightarrow-12x^2+12x-144=0\\ \Leftrightarrow x^2-x+12=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)
Bài 4. Tìm số nguyên x, biết:
a) (x2 −9)(5x+15) =0 |
|
| b) x2 – 8x= 0 |
c) 5+12.(x−1)2 = 53 |
|
| d) (x− 5)2 = 36 |
e) (3x+−5)3 = 64 |
|
| f) 42x + 24x+3 = 144 |
Lời giải:
a. $(x^2-9)(5x+15)=0$
$\Rightarrow x^2-9=0$ hoặc $5x+15=0$
Nếu $x^2-9=0$
$\Rightarrow x^2=9=3^2=(-3)^2$
$\Rightarrow x=3$ hoặc $-3$
Nếu $5x+15=0$
$\Rightarrow x=-3$
b.
$x^2-8x=0$
$\Rightarrow x(x-8)=0$
$\Rightarrow x=0$ hoặc $x-8=0$
$\Rightarrow x=0$ hoặc $x=8$
c.
$5+12(x-1)^2=53$
$12(x-1)^2=53-5=48$
$(x-1)^2=48:12=4=2^2=(-2)^2$
$\Rightarrow x-1=2$ hoặc $x-2=-2$
$\Rightarrow x=3$ hoặc $x=0$
d.
$(x-5)^2=36=6^2=(-6)^2$
$\Rightarrow x-5=6$ hoặc $x-5=-6$
$\Rightarrow x=11$ hoặc $x=-1$
e.
$(3x-5)^3=64=4^3$
$\Rightarrow 3x-5=4$
$\Rightarrow 3x=9$
$\Rightarrow x=3$
f.
$4^{2x}+2^{4x+3}=144$
$2^{4x}+2^{4x}.8=144$
$2^{4x}(1+8)=144$
$2^{4x}.9=144$
$2^{4x}=144:9=16=2^4$
$\Rightarrow 4x=4\Rightarrow x=1$