Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tt_Cindy_tT
Xem chi tiết

a: Xét ΔCDE có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCDE cân tại C

b:

Ta có: ΔABC vuông cân tại A

=>\(\widehat{ABC}=\widehat{ACB}=45^0\)

Xét ΔBFC có

BH là đường cao

BH là đường phân giác

Do đó: ΔBFC cân tại B

=>\(\widehat{BFC}=\dfrac{180^0-\widehat{FBC}}{2}=\dfrac{180^0-45^0}{2}=67,5^0\)

=>\(\widehat{BFC}>\widehat{CBF}\)

c: Ta có: ΔBFC cân tại B

mà BH là đường cao

nên H là trung điểm của CF

Xét tứ giác DCEF có

H là trung điểm chung của DE và CF

=>DCEF là hình bình hành

=>DF//CE

Trần Thu bÍch
Xem chi tiết
Trần Trường	Nguyên
Xem chi tiết
can pham
Xem chi tiết
Nguyen Thuy An
Xem chi tiết
Nguyễn Đức Quốc Chương
Xem chi tiết
Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 4 2021 lúc 23:31

b) Ta có: ΔBAD=ΔBED(cmt)

nên DA=DE(hai cạnh tương ứng)

Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE(Đpcm)

Nguyễn Lê Phước Thịnh
12 tháng 4 2021 lúc 23:30

Sửa đề: BA=BE

a) Xét ΔBAD và ΔBED có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔBAD=ΔBED(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE⊥BC(đpcm)

Nguyễn Lê Phước Thịnh
12 tháng 4 2021 lúc 23:33

c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

AF=EC(gt)

Do đó: ΔADF=ΔEDC(hai cạnh góc vuông)

Suy ra: \(\widehat{ADF}=\widehat{EDC}\)(hai góc tương ứng)

mà \(\widehat{ADF}+\widehat{FDC}=180^0\)(hai góc kề bù)

nên \(\widehat{EDC}+\widehat{FDC}=180^0\)

hay D,E,F thẳng hàng(đpcm)

Thu Hà 7A1
Xem chi tiết
Thu Hà 7A1
2 tháng 4 2022 lúc 15:27

b) CMR FBA=FCH

 

Hương Ly
Xem chi tiết