Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Hoàng

Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên BC lấy E sao cho AB = AE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD với FC. CMR:

a) Tam giác ABD = Tam giác EBD và DE vuông góc BC

b) BD là đường trung trực của đoạn thẳng AE

c) Ba điểm D; E; F thẳng hàng 

d) Điểm D cách đều ba cạnh của tam giác AEI

 

Nguyễn Lê Phước Thịnh
12 tháng 4 2021 lúc 23:31

b) Ta có: ΔBAD=ΔBED(cmt)

nên DA=DE(hai cạnh tương ứng)

Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE(Đpcm)

Nguyễn Lê Phước Thịnh
12 tháng 4 2021 lúc 23:30

Sửa đề: BA=BE

a) Xét ΔBAD và ΔBED có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔBAD=ΔBED(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE⊥BC(đpcm)

Nguyễn Lê Phước Thịnh
12 tháng 4 2021 lúc 23:33

c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

AF=EC(gt)

Do đó: ΔADF=ΔEDC(hai cạnh góc vuông)

Suy ra: \(\widehat{ADF}=\widehat{EDC}\)(hai góc tương ứng)

mà \(\widehat{ADF}+\widehat{FDC}=180^0\)(hai góc kề bù)

nên \(\widehat{EDC}+\widehat{FDC}=180^0\)

hay D,E,F thẳng hàng(đpcm)


Các câu hỏi tương tự
Huy Dz
Xem chi tiết
my phạm
Xem chi tiết
luu minh chau
Xem chi tiết
trần đình nguyên
Xem chi tiết
Phạm Hoàng Anh
Xem chi tiết
Nguyễn Thị Anh Thư
Xem chi tiết
03-Bảo Châu- lớp 6/6
Xem chi tiết
Vũ Quang
Xem chi tiết
Nguyễn Dương Anh Na
Xem chi tiết