Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Thu Hiền
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 11 2021 lúc 22:24

\(a,ĐK:1\le x\le3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{3-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a+b-ab=1\Leftrightarrow a+b-ab-1=0\\ \Leftrightarrow\left(a-1\right)\left(1-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\3-x=1\end{matrix}\right.\Leftrightarrow x=2\left(tm\right)\)

\(b,ĐK:0\le x\le9\\ PT\Leftrightarrow9+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\\ \Leftrightarrow2\sqrt{-x^2+9x}-\left(-x^2+9x\right)=0\\ \Leftrightarrow\sqrt{-x^2+9x}\left(2-\sqrt{-x^2+9x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\\x^2-9x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=9\left(n\right)\\x=\dfrac{9+\sqrt{65}}{2}\left(n\right)\\x=\dfrac{9-\sqrt{65}}{2}\left(n\right)\end{matrix}\right.\)

 

Trần Thị Thảo Ngọc
Xem chi tiết
alibaba nguyễn
2 tháng 4 2018 lúc 16:33

1/ Đặt \(\sqrt{x^2+x+1}=a>0\)

\(\Rightarrow a^2+2-3a=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=2\end{cases}}\)

alibaba nguyễn
2 tháng 4 2018 lúc 16:37

2/ \(\sqrt{x+5}-\sqrt{x}=\sqrt{x-3}\)

\(\Leftrightarrow\sqrt{x+5}=\sqrt{x}+\sqrt{x-3}\)

\(\Leftrightarrow8-x=2\sqrt{x\left(x-3\right)}\)

\(\Leftrightarrow-3x^2-4x+64=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{16}{3}\\x=4\end{cases}}\)

PS: Điều kiện b tự làm rồi tự chọn nghiệm nhé

Oh Nova
27 tháng 5 2018 lúc 22:27

MÌnh đang học lớp 8 nên chỉ giải được câu 1 thôi :(

1) \(x^2+x+1-3\sqrt{x^2+x+1}+2.25-0.25=0\)

\(\left(x^2+x+1-1.5\right)^2=0.25\)

\(=>\left(x^2+x-1.5\right)^2=0.5^2\)

=> \(x^2+x-1.5=0.5\)                                     \(x^2+x-1.5=-0.5\)

\(x^2+x-2=0\)                                                     \(x^2+x-1=0\\ x^2+x+\frac{1}{4}=\frac{5}{4}\)

\(x^2+x+\frac{1}{4}=\frac{9}{4}\\ \left(x+\frac{1}{2}\right)^2=\frac{9}{4}\)                                       Đến đây bạn tự làm nốt nhé mình lười quá Sorry

Dương Thị Thu Hiền
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết
Akai Haruma
28 tháng 11 2021 lúc 0:17

Lời giải:

1. ĐKXĐ: $x\geq \frac{-5+\sqrt{21}}{2}$

PT $\Leftrightarrow x^2+5x+1=x+1$

$\Leftrightarrow x^2+4x=0$

$\Leftrightarrow x(x+4)=0$

$\Rightarrow x=0$ hoặc $x=-4$

Kết hợp đkxđ suy ra $x=0$

2. ĐKXĐ: $x\leq 2$

PT $\Leftrightarrow x^2+2x+4=2-x$

$\Leftrightarrow x^2+3x+2=0$

$\Leftrightarrow (x+1)(x+2)=0$

$\Leftrightarrow x+1=0$ hoặc $x+2=0$

$\Leftrightarrow x=-1$ hoặc $x=-2$
3.

ĐKXĐ: $-2\leq x\leq 2$

PT $\Leftrightarrow \sqrt{2x+4}=\sqrt{2-x}$

$\Leftrightarrow 2x+4=2-x$

$\Leftrightarrow 3x=-2$

$\Leftrightarrow x=\frac{-2}{3}$ (tm)

 

Lê Thu Trang
Xem chi tiết
Phạm Tú Anh
Xem chi tiết
nhóm cung cự giải
Xem chi tiết
tranthuylinh
Xem chi tiết
Lấp La Lấp Lánh
28 tháng 9 2021 lúc 17:25

1) \(\Leftrightarrow\sqrt{\left(x+5\right)^2}=4\)

\(\Leftrightarrow\left|x+5\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=4\\x+5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\end{matrix}\right.\)

2) \(ĐK:x\ge2\)

\(\Leftrightarrow\sqrt{x-2}=2\)

\(\Leftrightarrow x-2=4\Leftrightarrow x=6\left(tm\right)\)

3) \(\Leftrightarrow\left(x^2-x+4\right)-\sqrt{x^2-x+4}+\dfrac{1}{4}=\dfrac{9}{4}\)

\(\Leftrightarrow\left(\sqrt{x^2-x+4}-\dfrac{1}{2}\right)^2=\dfrac{9}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}-\dfrac{1}{2}=\dfrac{3}{2}\\\sqrt{x^2-x+4}-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}=2\\\sqrt{x^2-x+4}=-1\left(VLý\right)\end{matrix}\right.\)

\(\Leftrightarrow x^2-x+4=4\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

4) \(ĐK:x\ge0\)

\(\Leftrightarrow3\sqrt{x}-3=\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{25}{4}\left(tm\right)\)

Ngoc Anhh
Xem chi tiết
Phạm Tuấn Đạt
5 tháng 8 2018 lúc 8:40

\(a,\sqrt{2x+5}=\sqrt{1-x}\)

\(\Rightarrow2x+5=1-x\)

\(2x+x=1-5\)

\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)

Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên