Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
MyNameNhii
Xem chi tiết
Akai Haruma
19 tháng 4 2021 lúc 1:31

Lời giải:
PT $\Leftrightarrow \frac{x-342}{15}-1+\frac{x-323}{17}-2+\frac{x-300}{19}-3+\frac{x-273}{21}-4=0$

$\Leftrightarrow \frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0$

$(x-357)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0$

Dễ thấy: $\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\neq 0$

$\Rightarrow x-357=0$

$\Rightarrow x=357$

 

Nàng tiên cá
Xem chi tiết
Pham Van Hung
22 tháng 2 2019 lúc 12:36

\(2x^4+3x^3+8x^2+6x+5=0\)

\(\Leftrightarrow2x^4+2x^3+2x^2+x^3+x^2+x+5x^2+5x+5=0\)

\(\Leftrightarrow2x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+5\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(2x^2+x+5\right)=0\)

Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(2x^2+x+5=2\left[\left(x+\frac{1}{4}\right)^2+\frac{39}{16}\right]>0\forall x\)

Vậy tập nghiệm của pt là \(S=\varnothing\)

b, \(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)

\(\Leftrightarrow\left(\frac{x-342}{15}-1\right)+\left(\frac{x-323}{17}-2\right)+\left(\frac{x-300}{19}-3\right)+\left(\frac{x-273}{21}-4\right)=0\)

\(\Leftrightarrow\frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)

\(\Leftrightarrow\left(x-357\right)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)

\(\Leftrightarrow x-357=0\Leftrightarrow x=357\) 

Vậy tập nghiệm của pt: \(S=\left\{357\right\}\)

Núi non tình yêu thuần k...
Xem chi tiết
Akai Haruma
22 tháng 2 2019 lúc 0:18

Câu a)

\(2x^4+3x^3+8x^2+6x+5=0\)

\(\Leftrightarrow (2x^4+2x^3+2x^2)+(x^3+x^2+x)+5x^2+5x+5=0\)

\(\Leftrightarrow 2x^2(x^2+x+1)+x(x^2+x+1)+5(x^2+x+1)=0\)

\(\Leftrightarrow (x^2+x+1)(2x^2+x+5)=0\)

\(\Rightarrow \left[\begin{matrix} x^2+x+1=0\\ 2x^2+x+5=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} (x+\frac{1}{2})^2+\frac{3}{4}=0\\ 2(x+\frac{1}{4})^2+\frac{39}{8}=0\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm.

Cách khác:

PT \(\Leftrightarrow 4x^4+6x^3+16x^2+12x+10=0\)

\(\Leftrightarrow 3x^4+(x^4+6x^3+9x^2)+7x^2+12x+10=0\)

\(\Leftrightarrow 3x^4+(x^2+3x)^2+(4x^2+12x+9)+3x^2+1=0\)

\(\Leftrightarrow 3x^4+(x^2+3x)^2+(2x+3)^2+3x^2=-1\)

(vô lý vì vế phải âm còn vế trái không âm)

Vậy pt vô nghiệm.

Akai Haruma
22 tháng 2 2019 lúc 0:21

Câu b:

\(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)

\(\Leftrightarrow \frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}-10=0\)

\(\Leftrightarrow \frac{x-342}{15}-1+\frac{x-323}{17}-2+\frac{x-300}{19}-3+\frac{x-273}{21}-4=0\)

\(\Leftrightarrow \frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)

\(\Leftrightarrow (x-357)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)

Dễ thấy \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\neq 0\), do đó $x-357=0$ hay $x=357$ là nghiệm duy nhất của pt.

Nguyễn Thành Trương
22 tháng 2 2019 lúc 13:00

a) Ta có: \(2x^4+3x^3+8x^2+6x+5=0\)

\(\Leftrightarrow 4x^4+6x^3+16x^2+12x+10=0\)

\(\Leftrightarrow (x^4+9x^2+4+6x^3+4x^2+12x)+(3x^4+3x^2+6)=0\)

\(\Leftrightarrow (x^2+3x+2)^2+3(x^4+x^2+\frac{1}{4})+\frac{21}{4}=0\)

\(\Leftrightarrow (x^2+3x+2)^2+3(x^2+\frac{1}{2})^2+\frac{21}{4}=0(*)\)

Thấy rằng \((x^2+3x+2)^2\geq 0; (x^2+\frac{1}{2})^2\geq 0\forall x\in\mathbb{R}\)

Do đó \((x^2+3x+2)^2+3(x^2+\frac{1}{2})^2+\frac{21}{4}\geq \frac{21}{4}>0\)

Suy ra \((*)\) vô nghiệm dẫn đến PT đầu tiên vô nghiệm (đpcm)

OkeyMan
Xem chi tiết
Hạnh Huỳnh
4 tháng 2 2018 lúc 16:18

a. \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)

<=> \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-6\cdot5\)

<=> \(25x+10-80x+10=24x+12-30\)

<=> \(25x-80x-24x=12-30-10-10\)

<=> \(-79x=-38\)

<=> \(x=\dfrac{-38}{-79}\)

\(x=\dfrac{38}{79}\)

b. \(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)

<=> \(30\cdot x-6\left(2x-5\right)+5\left(x+8\right)=30\cdot7+10\left(x-1\right)\)

<=> \(30x-12x+30+5x+40=210+10x-10\)

<=> \(30x-12x+5x-10x=210-10-30-40\)

<=> \(13x=130\)

<=> \(x=\dfrac{130}{13}\)

\(x=10\)

c. \(\dfrac{x+1}{15}+\dfrac{x+2}{7}+\dfrac{x+4}{4}+6=0\)

<=> \(28\left(x+1\right)+60\left(x+2\right)+105\left(x+4\right)+420\cdot6=0\)

<=> \(28x+28+60x+120+105x+420+2520=0\)

<=> \(28x+60x+105x=-28-120-420-2520\)

<=> \(193x=-3088\)

<=> \(x=\dfrac{-3088}{193}\)

\(x=-16\)

d. \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)

<=> \(6783\left(x-342\right)+5985\left(x-323\right)+5355\left(x-300\right)+4845\left(x-273\right)=101745\cdot10\)

<=> \(6783x-2319786+5985x-1933155+5355x-1606500+4845x-1322685=1017450\)

<=> \(6783x+5985x+5355x+4845x=1017450+2319786+1933155+1606500+1322685\)

<=> \(22968x=8199576\)

<=> \(x=\dfrac{8199576}{22968}\)

\(x=357\)

OkeyMan
4 tháng 2 2018 lúc 14:07

Đề là giải PT nha các bn

Bich Hoi Le
Xem chi tiết
Bich Hoi Le
Xem chi tiết
le thi quynhanh
Xem chi tiết
Xyz OLM
24 tháng 8 2020 lúc 17:15

Ta có : \(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)

=> \(\left(\frac{x-342}{15}-1\right)+\left(\frac{x-323}{17}-2\right)+\left(\frac{x-300}{19}-3\right)+\left(\frac{x-273}{21}-4\right)=0\)

=> \(\frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)

=> \(\left(x-357\right)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)

Vì \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\ne0\)

=> x - 357 = 0

=> x = 357

Vậy x = 357

Khách vãng lai đã xóa
Trí Thắng Vũ
Xem chi tiết
๖Fly༉Donutღღ
25 tháng 4 2018 lúc 9:48

Có phải sai đề ko sao 2 phân số có mẫu 19 zữ

Trí Thắng Vũ
25 tháng 4 2018 lúc 9:59

đề sở sao sai

Phương Trang
Xem chi tiết