Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bê trần
Xem chi tiết
Thanh Trà
16 tháng 4 2018 lúc 19:24

-Cái này áp dụng hằng đẳng thức số 3 á.

\(\left(2x-5\right)^2-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(2x-5+x+2\right)\left(2x-5-x-2\right)=0\)

\(\Leftrightarrow\left(3x-3\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-3=0\\x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)

Vậy...

Hồng Quang
16 tháng 4 2018 lúc 20:02

Bài eassy

\(\left(2x-5\right)^2-\left(x+2\right)^2\)

\(\Leftrightarrow\left(2x-5-x-2\right)\left(2x-5+x+2\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(3x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)

Vậy.....................

Nhã Doanh
16 tháng 4 2018 lúc 20:18

Một cách khác dài hơn -.-

\(\left(2x-5\right)^2-\left(x+2\right)^2=0\)

\(\Leftrightarrow4x^2-20x+25-x^2-4x-4=0\)

\(\Leftrightarrow3x^2-24x+21=0\)

\(\Leftrightarrow\left(3x^2-21x\right)-\left(3x-21\right)=0\)

\(\Leftrightarrow x\left(3x-21\right)-\left(3x-21\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-21\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-21=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)

Vậy...........

Nguyễn Lan Anh
Xem chi tiết
Kirito-Kun
13 tháng 9 2021 lúc 13:30

Bài 5: 

a. 1 - 2y + y2

= (1 - y)2

b. (x + 1)2 - 25

= (x + 1)2 - 52

= (x + 1 - 5)(x + 1 + 5)

= (x - 4)(x + 6)

c. 1 - 4x2

= 12 - (2x)2

= (1 - 2x)(1 + 2x)

d. 8 - 27x3

= 23 - (3x)3

= (2 - 3x)(4 + 6x + 9x2)

e. (đề hơi khó hiểu ''x3'' !?)

g. x3 + 8y3

= (x + 2y)(x2 - 2xy + y2)

Dream2
Xem chi tiết
Thúy Trần Minhh
Xem chi tiết
Thúy Trần Minhh
20 tháng 4 2016 lúc 22:37

x=17 nhé

Thúy Trần Minhh
26 tháng 4 2016 lúc 20:11

mk kô bt đánh ps đâuu à

Phong Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2022 lúc 19:48

Câu 2: 

\(\left(A\cup B\right)\cap C=A\cap C=[1;+\infty)\cap\left(0;4\right)=[1;4)\)

Tập này có 3 phần tử nguyên

katori mekirin
Xem chi tiết
katori mekirin
18 tháng 1 2022 lúc 13:44

giúp mình với

 

Dr.STONE
18 tháng 1 2022 lúc 13:52

a. \(\dfrac{x^2+2x+3}{x^2-x+1}=0\) ⇔x2+2x+3=0 ⇔x2+2x+1+2=0 ⇔(x+1)2+2=0

Vì (x+1)2+2>0 nên phương trình đã cho vô nghiệm.

b) \(\dfrac{x}{x+2}+\dfrac{4}{x-2}=\dfrac{4}{x^2-4}\) ⇔\(\dfrac{x\left(x-2\right)+4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4}{\left(x-2\right)\left(x+2\right)}\)

\(x\left(x-2\right)+4\left(x+2\right)=4\) ⇔x2-2x+4x+8-4=0 ⇔x2+2x+4=0                ⇔x2+2x+1+3=0 ⇔(x+1)2+3=0

Vì (x+1)2+3>0 nên phương trình đã cho vô nghiệm.

     
你混過 vulnerable 他 難...
Xem chi tiết
Akai Haruma
4 tháng 1 2021 lúc 18:22

Bài 2. 

ĐK: $x\geq \frac{-11}{2}$

$x+\sqrt{2x+11}=0\Leftrightarrow x=-\sqrt{2x+11}$

\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=2x+11\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ x^2-2x-11=0(*)\end{matrix}\right.\)

\(\Delta'(*)=12\)

\(\Rightarrow x=1\pm \sqrt{12}=1\pm 2\sqrt{3}\). Với điều kiện của $x$ suy ra $x=1-2\sqrt{3}$

$\Rightarrow a=1; b=-2\Rightarrow ab=-2$

 

Akai Haruma
4 tháng 1 2021 lúc 18:19

Bài 1. 

Đặt $x^2+2x=t$ thì PT ban đầu trở thành:

$t^2-t-m=0(1)$

Để PT ban đầu có 4 nghiệm phân biệt thì:

Trước tiên PT(1) cần có 2 nghiệm phân biệt. Điều này xảy ra khi $\Delta (1)=1+4m>0\Leftrightarrow m> \frac{-1}{4}(*)$

Với mỗi nghiệm $t$ tìm được, thì PT $x^2+2x-t=0(2)$ cần có 2 nghiệm $x$ phân biệt. 

Điều này xảy ra khi $\Delta '(2)=1+t>0\Leftrightarrow t>-1$

Vậy ta cần tìm điều kiện của $m$ để (1) có hai nghiệm $t$ phân biệt đều lớn hơn $-1$

Điều này xảy ra khi \(\left\{\begin{matrix} (t_1+1)(t_2+1)>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1t_2+t_1+t_2+1>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -m+1+1>0\\ 1+2>0\end{matrix}\right.\Leftrightarrow m< 2(**)\)

Từ $(*); (**)\Rightarrow \frac{-1}{4}< m< 2$

b) 

Để pt ban đầu vô nghiệm thì PT(1) vô nghiệm hoặc có 2 nghiệm $t$ đều nhỏ hơn $-1$

PT(1) vô nghiệm khi mà $\Delta (1)=4m+1<0\Leftrightarrow m< \frac{-1}{4}$

Nếu PT(1) có nghiệm thì $t_1+t_2=1>-2$ nên 2 nghiệm $t$ không thể cùng nhỏ hơn $-1$

Vậy PT ban đầu vô nghiệm thì $m< \frac{-1}{4}$

c) Để PT ban đầu có nghiệm duy nhất thì:

\(\left\{\begin{matrix} \Delta (1)=1+4m=0\\ \Delta' (2)=1+t=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=-\frac{1}{4}\\ t=-1\end{matrix}\right.\).Mà với $m=-\frac{1}{4}$ thì $t=\frac{1}{2}$ nên hệ trên vô lý. Tức là không tồn tại $m$ để PT ban đầu có nghiệm duy nhất. 

d) 

Ngược lại phần b, $m\geq \frac{-1}{4}$

e) 

Để PT ban đầu có nghiệm kép thì PT $(2)$ có nghiệm kép. Điều này xảy ra khi $\Delta' (2)=1+t=0\Leftrightarrow t=-1$

$t=-1\Leftrightarrow m=(-1)^2-(-1)=2$

 

 

nguyễn hoàng lê thi
Xem chi tiết
Phạm Mạnh Kiên
Xem chi tiết
Lê Trang
29 tháng 7 2021 lúc 14:57

undefined

Bạn vô đó để viết lại đề nha!

Trương Huy Hoàng
29 tháng 7 2021 lúc 14:58

Bạn gõ bằng công thức trực quan để được giúp đỡ nhanh hơn nhé, chứ mình nhìn thế không dịch được (Nhấp vào biểu tượng chữ M nằm ngang)