giải phương trình nghiệm nguyên:\(x^2+2y^2+3xy+3x+5y=15\)
Giải phương trình nghiệm nguyên : \(x^2+2y^2+3xy+3x+5y=15\)
tách như này nè
\(x^2+2y^2+3xy+3x+5y+2=17\)
bn tham khảo câu này nha https://h.vn/hoi-dap/question/79049.html
chúc bn học tốt.tk mk nha
cấp 3 rôi
phương trình thì cấp 3 mới làm được chứ mấy bọn con nít chơi cái này ko làm được đâu
Giải phương trình nghiệm nguyên:
x2 + 2y2 + 3xy +3x + 5y = 15
x2 + 2y2 + 3xy + 3x + 5y = 15
Û (x +y +z )(x + 2y +1)
đúng không???
Giải phương trình nghiệm nguyên : x2+2y2+3xy+3x+5y=15
Mong các bạn giúp đỡ!
giải phương trình nghiệm nguyên : \(x^2 + 2y^2 + 3xy + 3x + 3y = 15\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y\right)+3\left(x+y\right)=15\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y+3\right)=15\)
15 có hơi nhiều cặp ước nên bạn tự lập bảng và giải nốt nhé :)
giải phương trình nghiệm nguyên 3x^2+3xy+3y^2=x+8y
giải phương trình nghiệm nguyên 2x^2+3y^2-5xy+3x-2y-3=0
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
Tìm nghiệm nguyên của pt \(x^2+2y^2+3xy+3x+5y=15\)
Ta có:
x2 + 2y2 + 3xy + 3x + 5y = 15
<=> x2 + 2y2 + 3xy + 3x + 5y + 2 = 17
<=> (x2 + xy + 2x) + (2xy + 2y2 + 4y) + (x + y + 2) = 17
<=> (x + y + 2)(x + 2y + 1) = 17
=> (x + y + 2, x + 2y + 1) = (1,17; 17,1; - 1,-17; -17,-1)
Giải ra là tìm được x,y nhé
VeryVery good.Thanks. I will give 1 for you.Love
giải pt nghiệm nguyên: x2 + 2y2 + 3xy + 3x + 5y = 15
PT đã cho ghép nhóm vào được :
\(\left(x^2+3xy+\frac{9}{4}y^2\right)+2\left(x+\frac{3}{2}y\right).\frac{3}{2}+\frac{9}{4}-\frac{1}{4}\left(y^2-2y+1\right)=17\)
\(\Leftrightarrow\left(x+\frac{3}{2}y+\frac{3}{2}\right)^2-\frac{1}{4}\left(y-1\right)^2=17\)
\(\Leftrightarrow\left(x+\frac{3}{2}y+\frac{3}{2}-\frac{1}{2}y+\frac{1}{2}\right)\left(x+\frac{3}{2}y+\frac{3}{2}+\frac{1}{2}y-\frac{1}{2}\right)=17\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+2y+1\right)=17\)
Sau đấy lập bảng xét ước
Giải phương trình nghiệm nguyên :
\(a)x^2-3xy+3y^2=3y\)
\(b)x^2-2xy+5y^2=y+1\)
a) \(x^2-3xy+3y^2=3y\)
Rõ ràng \(x⋮y\) nên đặt \(x=ky\left(k\inℤ\right)\). Pt trở thành:
\(k^2y^2-3ky^2+3y^2=3y\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\k^2y-3ky+3y=3\end{matrix}\right.\).
Khi \(y=0\) \(\Rightarrow x=0\).
Khi \(k^2y-3ky+3y=3\)
\(\Leftrightarrow y\left(k^2-3k+3\right)=3\)
Ta lập bảng giá trị:
\(y\) | 1 | 3 | -1 | -3 |
\(k^2-3k+3\) | 3 | 1 | -3 | -1 |
\(k\) | 0 hoặc 3 | 1 hoặc 2 | vô nghiệm | vô nghiệm |
\(x\) | 0 (loại) hoặc 3 (nhận) | 3 (nhận) hoặc 6 (nhận) |
Vậy pt đã cho có các nghiệm \(\left(0;0\right);\left(3;1\right);\left(3;3\right);\left(6;3\right)\)
b) \(x^2-2xy+5y^2=y+1\)
\(\Leftrightarrow x^2-2yx+5y^2-y-1=0\)
\(\Delta'=\left(-y\right)^2-\left(5y^2-y-1\right)\) \(=-4y^2+y+1\)
Để pt đã cho có nghiệm thì \(-4y^2+y+1\ge0\), giải bpt thu được \(\dfrac{1-\sqrt{17}}{8}\le y\le\dfrac{1+\sqrt{17}}{8}\). Mà lại có \(-1< \dfrac{1-\sqrt{17}}{8}< 0< \dfrac{1+\sqrt{17}}{8}< 1\) nên suy ra \(y=0\). Từ đó tìm được \(x=\pm1\). Vậy pt đã cho có các nghiệm \(\left(1;0\right);\left(-1;0\right)\)
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)