( cos a+sin a/cos a-sin a) -1 với tan a=0,5
a) Biết sin a =\(\dfrac{2}{3}\).Tính cos a,tan a,cot a
b)Biết cos a =\(\dfrac{1}{5}\).Tính sin a, tan a,cot a
c)Biết tan a = 2.Tính sin a,cos a ,cot a.
a: sin a=2/3
=>cos^2a=1-(2/3)^2=5/9
=>\(cosa=\dfrac{\sqrt{5}}{3}\)
\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)
\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)
b: cos a=1/5
=>sin^2a=1-(1/5)^2=24/25
=>\(sina=\dfrac{2\sqrt{6}}{5}\)
\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)
\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)
c: cot a=1/tana=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>1/cos^2a=1+4=5
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)
chứng tỏ:
tan a = sin a/ cos a;
cot a = cos a/ sin a;
tan a . cot a =1;
sin^2 a+ cos^2 a =1
Câu 1: Chứng minh đẳng thức:
a)\(\frac{\sin a}{1+\cos a}\)=\(\frac{1-\cos a}{\sin a}\)
b)\(\frac{\cos a}{1-\sin a}\)=\(\frac{1+\sin a}{\cos a}\)
c)\(\frac{\cos a}{1+\sin a}\)+\(\tan a\)=\(\frac{1}{\cos a}\)
d) \(\frac{\sin a}{1+\cos a}\)+\(\frac{1+\cos a}{\sin a}\)=\(\frac{2}{\sin a}\)
e) \(\sin^4x+\cos^4x\)=\(1-2\sin^2x\cos^2\)x
f) \(\sin^4x-\cos^4x\)=\(1-2\cos^2x\)
g) \(\sin^6x+\cos^6x\)=\(1-3\sin^2x\cos^2x\)
h) \(\tan x\tan y\left(\cot x+\cot y\right)\)=\(\tan x+\tan y\)
tính giá trị của biểu thức:
B= \(\frac{\sin a+\cos a}{\cos a-sina}\) biết \(\tan a=-2\)
C= \(\sin^2a-\sin a.\cos a+\cos^2a\) biết \(\tan a=\frac{1}{2}\)
F= \(\frac{8\cos^3a-2\sin^3a+\cos a}{2\cos a-\sin^3a}\) biết \(\tan a=2\)
\(sin^2a-sina.cosa+cos^2a\)
\(\Leftrightarrow tan^2a-tana+1\)
Thay tana = 1/2
\(\left(\frac{1}{2}\right)^2-\frac{1}{2}+1=\frac{3}{4}\)
\(\frac{\sin^2a}{\sin a-\cos a}-\frac{\sin a+\cos a}{\tan^2a-1}=\sin a+\cos a\)
chung minh dang thuc tren
\(=\frac{\sin^2a}{\sin a-\cos a}-\frac{\sin a+\cos a}{\frac{\sin^2a}{\cos^2a}-1}=\)
\(=\frac{\sin^2a}{\sin a-\cos a}-\frac{\cos^2a\left(\sin a+\cos a\right)}{\sin^2a-\cos^2a}=\)
\(=\frac{\sin^2a\left(\sin a+\cos a\right)-\cos^2a\left(\sin a+\cos a\right)}{\sin^2a-\cos^2a}=\)
\(=\frac{\left(\sin a+\cos a\right)\left(\sin^2a-\cos^2a\right)}{\sin^2a-\cos^2a}=\sin a+\cos a\left(dpcm\right)\)
cho tam giác ABC .chứng minh
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+sin\frac{B}{2}cos\frac{C}{2}cos\frac{A}{2}+sin\frac{C}{2}cos\frac{A}{2}cos\frac{B}{2}=sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}+tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}\)
Tự chứng minh từng cái này rồi suy ra cái đó nhé b.
Ta có: \(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}-sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}\)
Tương tự ta suy ra:
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}sin\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+3sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\left(1\right)\)
Tiếp theo chứng minh:
\(2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=\frac{cosA+cosB+cosC-1}{2}\left(2\right)\)
\(sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}\left(3\right)\)
\(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\left(4\right)\)
Từ (1), (2), (3), (4) suy được điều phải chứng minh
trinh le na
cho bạn 4 năm nữa cũng chưa hiểu đâu
Rút gọn biểu thức sau:
a) \(\left(1-\cos a\right)\left(1+\cos a\right)\)
b) \(1+\sin^2a+\cos^2a\)
c) \(\sin a-\sin a\cos^2a\)
d) \(\sin^4a+\cos^4a+2\sin^2a\cos^2a\)
e)\(\tan^2a-\sin^2a\tan^2a\)
f) \(\cos^2a+\tan^2a\cos^2a\)
GIẢI GIÚP MIK VS M.N!!!!!!!
cứuuuuuuu
\(a) A = a %2 sin 90 ^∘ + b ^2 cos 90 ^∘ + c ^2 cos 180 ^∘\)
\(b) B = 3 − sin ^2 90 ^∘ + 2 cos ^2 60 ^∘ − 3 tan ^2 45 ^∘\)
\(c) C = sin ^2 45 ^∘ − 2 sin ^2 50 ^∘ + 3 cos ^2 45 ^∘ − 2 sin ^2 40 ^∘ + 4 tan 55 ^∘ ⋅ tan 35 ^∘\)
cứu mấy anh zai ơiiiiiiiiiiiiii
khó z tui chưa học mà :)
1. 3-sin mũ 2 a-cos mũ 2 a
2. cos a - cos a nhân sin2 a
3. tan2a -sin2a nhân tan2a
4.tan2a-sin2a nhân tan2a
5. cos2a +tan2a nhân cos2a
Đề bài yêu cầu làm gì vậy bạn?