Câu 1: cho các số a,b,c thoã mãn a+b+c=1 chứng minh a2 +b2 +c2 ≥ 1/4
Câu 2: tìm tất cả các cặp số nguyên tố (x,y) là nghiệm của phương trình x2- 2y2-1 =0
các bạn giúp mình gần thi r
các bạn giải rõ rõ ra chút nhé!
mình cảm ơn trước
Bài 1 : Cho a,b là số nguyên có a2 + 9ab + b2 chia hết cho 11 .Chứng minh rằng : a2 –b2 chia hết cho 11 .
Bài 2 : Tìm tất cả các cặp số (m,n) là số nguyên dương có A=33m^2+6n-61 +4 là số nguyên tố .
Bài 3 : Cho x,y,z là số tự nhiên có x2+y2=z2 . Chứng minh rằng xy chia hết cho 12 .
Bài 4 : Có bao nhiêu số tự nhiên có hai chữ số có tính chất là chữ số cuối cùng của những số đó bình phương bằng chữ số cuối cùng của những số đó lập phương .
Câu 5 : Each box in a 3x3 table can be colored yellow or red . How many different colorings of the table are there ?
Các bạn giải giúp mình nha
Câu 1: Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết 48
Câu 2: Tìm tất cả các số nguyên x y, thỏa mãn x > y > 0: x^3 + 7y = y^3 +7x
Câu 3: Giải phương trình : (8x – 4x^2 – 1)(x^2 + 2x + 1) = 4(x^2 + x + 1)
bài 2 :
x3+7y=y3+7x
x3-y3-7x+7x=0
(x-y)(x2+xy+y2)-7(x-y)=0
(x-y)(x2+xy+y2-7)=0
\(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)
x2+xy+y2=7 (*)
Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)
Các bạn giải giúp mình nha!
Câu 1: Tìm tất cả các số nguyên x=>y=>z=>0 sao cho:
xyz + xy+ yz + xz +x+y+z=2011
Câu 2 Giải phương trình :
4(x^2+2)^2 = 25(x^3+1)
Câu 3 Tìm Max ,Min của
P= 2x^2 - xy - y^2
Với x, y thỏa mãn: x^2 + 2xy+ 3y^2=4
Câu 4 Cho a,b,c là độ dài ba cạnh của tam giác chứng minh:
1/(a^2+bc) + 1/(b^2+ac)+1/(c^2+ab) <= (a+b+c)/(2abc)
Câu 5 Tìm các số hữu tỉ x,y thỏa mãn:
x(căn bậc hai của(2011) + căn bậc hai của(2010)) + y(căn bậc hai của(2011) - căn bậc hai của(2010)) = Căn bậc hai của(2011^3) + Căn bậc hai của(2010^3)
Cho phương trình: x2x2 - (m-1)x + 2m - 6=0 (m là tham số)
a) Chứng tỏ phương trình luôn có nghiệm x1, x2 với mọi m
b) Tìm các giá trị nguyên của m sao cho A= \(\dfrac{2x1}{x2}+\dfrac{2x2}{x1}\) có giá trị nguyên Các bạn làm giúp mình câu b thôi khỏi làm câu a nhé
x2 - (m-1)x + 2m-6 = 0
a)xét delta
(m-1)2 - 4(2m-6) = m2 - 2m + 1 - 8m + 24
= m2 - 10m + 25 = (m-5)2 ≥ 0
=> pt luôn có 2 nghiệm với mọi m thuộc R
b) theo Vi-ét ta có
\(\left\{{}\begin{matrix}x1+x2=m-1\\x1x2=2m-6\end{matrix}\right.\)
theo đề ta có \(A=\dfrac{2x1}{x2}+\dfrac{2x2}{x1}\) đk: m ≠ 3
A = \(\dfrac{2x1^2+2x2^2}{x1x2}=\dfrac{2\left(\left(x1+x2\right)^2-2x1x2\right)}{2m-6}\)
A=\(\dfrac{m^2-6m+25}{m-3}\)
để A có giá trị nguyên thì m2 - 6m + 25 ⋮ m - 3
m2 - 6m + 9 + 16 ⋮ m - 3
(m-3)2 + 16 ⋮ m-3
16 ⋮ m - 3 => m-3 thuộc ước của 16
U(16) = { - 16; - 8; - 4; -2 ; -1 ; 1 ; 2; 4; 8; 16 }
=> m- 3 = { - 16; - 8; - 4; -2 ; -1 ; 1 ; 2; 4; 8; 16 }
m = { - 13 ; -5 ; -1; 1; 2; 4; 5; 7; 11; 19 }
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
4. Tìm liên hệ giữa các số a và b biết rằng: a b a b
5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
6. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
7. Tìm các giá trị của x sao cho:
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.
8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
bạn nên viết ra từng câu
Chứ để như thế này khó nhìn lắm
bạn hỏi từ từ thôi
1/ Cho a,b,c là ba số dương. Chứng minh rằng : \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge1\)
2/ Tìm tất cả các cặp số nguyên tố (x;y) là nghiệm của phương trình: \(x^2-2y^2-1=0\)
bài 1 áp dụng bất đẳng thức Cô-si swatch ta có:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}\)=1
dấu bằng xảy ra khi nào bạn tự tìm nh
bài 1: tìm tất cả các cặp số thực (a,b) thỏa mãn: a2+b2+9=ab+3a+3b
bài 2: cho các số thực a,b,c thỏa mãn (a+b+c)2=3(ab+bc+ca). chứng minh a=b=c
Bài 2 :
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca
<=> a^2 + b^2 + c^2 = ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca
<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0
<=> a = b = c
Bài 1 :
a^2 + b^2 + 9 = ab + 3a + 3b
<=> 2a^2 + 2b^2 + 18 = 2ab + 6a + 6b
<=> a^2 - 2ab + b^2 + a^2 - 6a + 9 + b^2 - 6a + 9 = 0
<=> ( a - b)^2 + ( a - 3)^2 + ( b - 3)^2 = 0
Dấu ''='' xảy ra khi a = b = 3
1.
\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)
2.
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Bài 1: (4,0 điểm). Cho biểu thức
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm).
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm).
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc 30.
Bài 4: (6,0 điểm).
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng
(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2
B1: Tìm cặp số tự nhiên (x,y) thỏa mãn x(y-1) = 5y -12
B2: Cho phân số A= x+1/2x+1 : 1/3 - x/2x+1
1/ Tìm tất cả các số nguyên x để A nhận GT là số nguyên
2/Tìm tất cả các số nguyên x để A đạt GTLN
CÁC BẠN GIẢI GIÚP MIK KÈM LỜI GIẢI NHA...!!!