cho hình bình hành ABCD qua D kẻ d cắt AC,AB,BC tại M,N,K, Chứng minh
a) DM.DM=NM.MK
b) 1/DN + 1/DK= 1/DM
c) CK.AN không đổi khi D thay đổi
Cho hình bình hành ABCD qua D kẻ đường thẳng D bất kì cắt AC, AB, BC lần lượt tại M,N,K. Chứng minh:
a, DM2=MN.MK
b, 1/DN+1/DK=1/DM
c, CK.AN không phụ thuộc vị trí của đường thẳng D
Giúp mình bài này với mình đang cần gấp
cho hình bình hành ABCD ,qua đỉnh D kẻ một đường thẳng cắt AC,AB,BC theo thứ tự tại M,N,K. chứng minh a, DM^2=MN*MK
b,DM/DN=DM/DK=1
Bài 1: Cho hình thang ABCD (AB//CD) , M là trung điểm của DC, E là giao điểm của AM và BD, F là giao điểm của BM và AC.
a, Tính độ dài EF, biết AB=15cm, CD=24cm
b,EF cắt AD, BC lần lượt tại I và K. Chứng minh IE=EF=FK
Bài 2:Cho hình bình hành ABCD qua D kẻ đường thẳng D bất kì cắt AC, AB, BC lần lượt tại M,N,K. Chứng minh:
a, DM^2=MN.MK
b, \(\frac{1}{DN}+\frac{1}{DK}=\frac{1}{DM}\)
c, CK.AN không phụ thuộc vị trí của đường thẳng D
Cho hình bình hành ABCD qua D kẻ đường thẳng D bất kì cắt AC, AB, BC lần lượt tại M,N,K. Chứng minh:
a, DM2=MN.MK
b, \(\frac{1}{DN}+\frac{1}{DK}=\frac{1}{DM}\)
c, CK.AN không phụ thuộc vị trí của đường thẳng D
Giúp mình bài này với mình đang cần gấp
cho hình bình hành ABCD qua D kẻ đường thẳng cắt các đường thẳng AC,AB,BC tại M,N,K.Chứng minh rằng
a, MD2=MN*MK
b,\(\frac{DM}{DN}+\frac{DM}{DK}=1\)
a) Ta có : AD // CK => \(\frac{MK}{MD}=\frac{CM}{AM}\left(1\right)\)
CD // AN => \(\frac{MD}{MN}=\frac{CM}{AM}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{MK}{MD}=\frac{MD}{MN}\Rightarrow MD^2=MK.MN\)
b) Sai đề
cho hình bình hành ABCD, kẻ đường thẳng qua D cắt AB ở M, cắt BC ở N, cắt AC ở I
a)C/m: AM/AB = CB/CN = DM/DN. từ đó => AM.CN không đổi
b) C/m: ID2 = IM.IN
c) Vẽ Bx // AC, Bx cắt MN ở E . C/m: EM/EN = DM/DN
d) Lấy K bất kì trên CD. KI cắt AB ở P và Q . C/m: MP/MQ = MA/MB
Cho hình bình hành ABCD. Một đường thẳng đi qua D cắt AC,AB,BC theo thứ tự M,N,K.
a) DM^2=MN.MK
b)\(\frac{DM}{DN}+\frac{DM}{DK}=1\)
câu a
xét tam giác MDC có
NA//DC (AB//DC)
\(\Rightarrow\frac{MN}{MD}=\frac{MA}{MC}\)( hệ quả Thales) (1)
xét tam giác MKC có
DA//CK (DA//BC)
\(\Rightarrow\frac{MD}{MK}=\frac{MA}{MC}\)( hệ quả Thales) (2)
từ (1) và (2) \(\Rightarrow\frac{MD}{MK}=\frac{MN}{MD}\)
\(\Rightarrow MD^2=MN.MK\)
câu b mình chưa giải đc nhé
Cho hình bình hành \(ABCD\), kẻ đường thẳng đi qua \(D\) cắt AB ở \(M\), cắt \(BC\) ở \(N\), cắt \(AC\) ở \(I\).
a) Chứng minh: \(\dfrac{AM}{AB}=\dfrac{CB}{CN}=\dfrac{DM}{DN}\) Từ đó suy ra \(AM.CN\) không đổi.
b) Chứng minh: \(ID^2 = IM.IN\)
c) Vẽ \(Bx//AC\), \(Bx\) cắt \(MN\) tại \(E\). Chứng minh: \(\dfrac{EM}{EN}=\dfrac{DM}{DN}\)
d) Lấy \(K\) bất kỳ trên cạnh \(CD\). \(KI\) và \(KN\) cắt \(AB\) ở \(P\) và \(Q\). Chứng minh: \(\dfrac{MP}{MQ}=\dfrac{MA}{MB}\)
Bài 1: Cho hình bình hành ABCD, d qua D, 1 đường thẳng d cắt AC, AB và CB thứ tự tại M, N, K
a) Chứng minh: DM2 =MN. MK
b) Chứng minh: DM/DN + DM/DK=1 ( DM trên DN cộng DM trên DK bằng 1)
Bài 2: Cho tam giác ABC, G là trọng tâm , d qua G, d cắt AB tại E, d cắt AC tại F.
Chứng minh : BE/AE + CF/AF =1 ( BE trên AE cộng CF trên AF bằng 1)
CẢM ƠN CÁC BN NHIỀU NHA!!!!!!