Cho bt a>b, chứng minh 4-3a<4-3b
cho a,b thuộc N và a+3b :5 . Chứng minh rằng 3a + 4b : 5
lưu ý :
a+3b chia hết cho 5 : 3a +4b chia hết cho
xin lỗi vì mình ko bt gõ dấu ba chấm !
Cho a>b chứng minh 3a+4>3b+3
Bài làm
Ta có: a > b
=> 3a > 3b
=> 3a + 4 > 3b + 4 (1)
Mà 4 > 3
=> 3b + 4 > 3b + 3 (2)
Từ (1) và (2) => 3a + 4 > 3b + 3 ( đpcm )
Cho a,b là các số thực thỏa mãn \(a^2+ab+b^2-b=0\).Chứng minh:
\(A=3a^5+b^4< 4\)
\(a^2+ab+b^2-b=0\)
\(\Delta=b^2-4\left(b^2-b\right)\ge0\Leftrightarrow-3b^2+4b\ge0\Rightarrow0\le b\le\dfrac{4}{3}\)
\(b^2+\left(a-1\right)b+a^2=0\)
\(\Delta=\left(a-1\right)^2-4a^2\ge0\Rightarrow-3a^2-2a+1\ge0\Rightarrow-1\le a\le\dfrac{1}{3}\)
\(\Rightarrow A=3a^5+b^4\le3.\left(\dfrac{1}{3}\right)^5+\left(\dfrac{4}{3}\right)^4=\dfrac{257}{81}< 4\)
cho A= 1 + 4 + 4^2 + . . . + 4^199
a. Thu gọn A
b. So sanh 3A và 4^200
c. Chứng minh rằng 3A + 1 là số chính phương
a) A = 4^200 - 4
b) 3A = 4^200 . 3 - 12 > 4^200
c) nghĩ đã
Tính:
A= 1.3+3.5+5.7+...+99.101
B= 1^2+3^2+5^2+...+99^2
Cho a<b chứng minh:
3a+4<3b+5
, Chứng minh rằng :
Tích (4+a-3b)^4(3a-5b-1)^4 chia hết cho 16 với mọi số nguyên a,b
Bài 1. Cho a < b. So sánh: a/ 2a và a + b b/ - 3a và - 3b c/ 2a và 2b
Bài 2. Cho a < b. Chứng tỏ : a/ 2a – 3 < 2b – 3 b/ 3a + 1 < 3b + 1
Bài 3. a/ Cho m > n . Chứng minh : 2m – 3 > 2n - 4
b/ Cho a < b . Chứng minh: 2a - 3 < 2b + 5
1. Rút gọn:
a) (a+1)(a+2)(a2+4)(a-1)(a2+1)(a-2)
b)(3a+1)2+(2-3a)(2+3a)
2. Cho a+b=1. Chứng minh rằng: a3+b3= 1-3ab
1.
a) ( a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)
= [(a+1)(a-1)][(a-2)(a+2)](a^2+1)(a^2+4)
=[(a^2+1)(a^2-1)][(a^2+4)(a^2-4)]
=(a^4-1)(a^4-16)
b)(3a+1)^2 + (2-3a)(2+3a)
= 9a2 + 6a +1 + 4 - 9a2
= 6a+5
2.
Ta có a3 +b3 = ( a + b)(a2 -ab + b2) = a2 + 2ab +b2 -3ab = (a+b)2 -3ab = 1-3ab ( dpcm)
1.
a) (a + 1)(a + 2)(a2 + 4)(a - 1)(a2 + 1)(a - 2)
= [(a + 1)(a - 1)][(a + 2)(a - 2)](a2 + 4)(a2 + 1)
= (a2 - 1)(a2 - 4)(a2 + 4)(a2 + 1)
= [(a2 - 1)(a2 + 1)][(a2 - 4)(a2 + 4)]
= (a4 - 1)(a4 - 16)
= a8 - 16a4 - a4 + 16
= a8 - 17a4 + 16
b) (3a + 1)2 + (2 - 3a)(2 + 3a)
= 9a2 + 6a + 1 + 22 - 9a2
= (9a2 - 9a2) + 6a + (1 + 4)
= 6a + 5
2.
a + b = 1
(a + b)3 = 13
a3 + 3a2b + 3ab2 + b3 = 1
a3 + b3 + 3ab(a + b) = 1
a3 + b3 = 1 - 3ab(a + b)
Mà a + b = 1
=> a3 + b3 = 1 - 3ab
Vậy với a + b = 1 thì a3 + b3 = 1 - 3ab
Cho a,b là các số dương. Chứng minh rằng: \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\le\frac{4}{a+b}\)