Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim TaeHyung
Xem chi tiết
Tai Tan Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 21:23

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

mà BH+CH=BC(H nằm giữa B và C)

nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=BH^2+AH^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)

hay AH=3(cm)

Vậy: AH=3cm

Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 21:38

b) Xét ΔDBH vuông tại D và ΔECH vuông tại E có 

BH=CH(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDBH=ΔECH(Cạnh huyền-góc nhọn)

Suy ra: HD=HE(hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)

Thái Thanh Vân
Xem chi tiết
Hân  Trần
Xem chi tiết
Hân  Trần
27 tháng 4 2016 lúc 21:14

Các bạn chỉ cần làm câu d thôi

Thương Trần
Xem chi tiết
Bé Của Nguyên
12 tháng 5 2018 lúc 20:13

Tự kẽ hình nha :

a) Xét tam giác AHB và tam giác ABC có :

\(\widehat{A}\) = \(\widehat{H}\) = 900

\(\widehat{B}\) = góc chung

=.tam giác AHB ~ tam giác CAB ( g.g)

b) ADĐL pitago và tam giác vuông ABC , có :

AB2 + AC2 = BC2

122 + 162 = BC2

BC2 = 400

=> BC = 20 cm

Vì tam giác AHB ~ tam giác CAB ( câu a) , ta có :

\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)

=.> \(\dfrac{AH}{16}\)= \(\dfrac{12}{20}\)

=> AH = 9,6 cm

c)

Thay : \(\dfrac{EA}{EB}\)= \(\dfrac{DB}{DC}\)=\(\dfrac{FC}{FA}\)

Thành : \(\dfrac{AD}{DB}\)=\(\dfrac{DB}{BC}\)= \(\dfrac{BC}{AD}\)

Mà : \(\dfrac{AD}{DB}\)=\(\dfrac{DB}{BC}\)=\(\dfrac{BC}{AD}\)= 1

=> \(\dfrac{EA}{EB}\)=\(\dfrac{DB}{DC}\)=\(\dfrac{FC}{FA}\)= 1

Nguyễn Đình Đạt
Xem chi tiết
Nguyễn Đình Đạt
Xem chi tiết
NgVH
Xem chi tiết
lê thoa
Xem chi tiết
Nguyễn Minh Quân
9 tháng 8 2017 lúc 22:02

mih jup câu a, b

a)Xét tam giác ABC vuông tại A

=>AB+BC=AC (đ/l py-ta-go)

thay \(9^2+BC^2=12^2\)

              \(BC^2=63\)

             \(BC=3\sqrt{7}\)

=> \(BC=3\sqrt{7}\)

b) xét tg BAD và tg BED:

        góc B1 = góc B2(BD_pgiác góc ABC)

        góc A = góc E

        BD chung

=> =nhau trường hợp (ch_gn)

=>DA=DE(2 cạnh tương ứng)

Ta có : DA=DE(cmt)

=> tg ADE cân (t/c)