Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Edogawa Conan
Xem chi tiết
Tên mk là thiên hương yê...
Xem chi tiết
uzumaki naruto
18 tháng 8 2017 lúc 20:26

Để (n-2)(n^2 + n - 1) là số nguyên tố => (n-2) hoặc n^2 + n - 1 phải = 1 

Mà n^2 + n - 1 = n^2 + 1 +(n-2) > n+2 

=> n + 2 = 1 => n = 3

Kid TK
18 tháng 8 2017 lúc 20:30

Vì p là tích của hai số ( n - 2 )( n^2 + n - 1 )

=> p là số nguyên tố thì một trong hai số tren phải = 1 ( nếu cả hai tích số đều lớn hơn 1 => p là hợp số , trái vs đầu bài )

ta luôn có : n^2 + n - 1 = n^2 + 1 + ( n- 2 ) > ( n - 2 )

vậy => n - 2 = 1 => n = 3 => p = 11

Chúc bạn hương học giỏi nha <3 <3 <3

chim cánh cụt
Xem chi tiết
Lê Anh Tú
14 tháng 2 2018 lúc 16:35

Gọi 2n -1,2n ,2n+1 là 3 số nguyên liên tiếp (n>2)

Ta có 2n-1 là số nguyên tố lớn hơn 3

=>2n-1 không chia hết cho 3

2n không chia hết cho 3 (2n -1,2n ,2n+1 là 3 số nguyên liên tiếp)

=> 2n+1 chia hết cho3 (1)

Vì n>2 => 2 n+1 > 3 (2)

Từ (1) và (2) => 2 n+1 là hợp số(đpcm)

Vũ Như Mai
Xem chi tiết
❤Trang_Trang❤💋
13 tháng 2 2018 lúc 19:31

\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)

\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)

\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)

\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=3-\left(1-\frac{1}{8}\right)\)

\(A=3-\frac{5}{8}\)

\(A=\frac{19}{8}\)

Thái Thị Hà Linh
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
4 tháng 6 2018 lúc 21:32

Câu hỏi của Davids Villa - Toán lớp 6 - Học toán với OnlineMath

Xem bài 1 tai jđây nhé ! mk ngại viết 

Trịnh Sảng và Dương Dươn...
4 tháng 6 2018 lúc 22:10

Bài 1:

Gọi p là số nguyên tố cần tìm và \(p=a+b=c-d\)với \(a,b,c,d\)là các số nguyên tố ,\(c>d\)

Vì \(p=a+b>2\)nên p là số lẻ 

\(\Rightarrow a+b\)và \(c-d\)là các số lẻ 

Vì \(a+b\)là số lẻ nên một trong hai số \(a,b\)là số chẵn ,giả sử b chẵn .Vì b là số nguyên tố nên \(b=2\)

Vì \(c-d\)là số lẻ nên một trong hai số \(c,d\)là số chẵn .Vì \(c,d\)là các số nguyên tố \(c>d\)nên d là số chẵn \(\Rightarrow d=2\)

Do vậy :\(p=a+2=c-2\Rightarrow c=a+4\)

Ta cần tìm số nguyên tố a  để \(p=a+2\)và \(c=a+4\)cũng là số nguyên tố 

Vậy số nguyên tố cần tìm là 5: với \(5=3+2=7-2\)

Bài 2 :

Từ \(p=\left(n-2\right)\left(n^2+n-5\right)\)suy ra \(n-2\) và \(n^2+n-5\)là ước của p

Vì p là số nguyên tố nên hoặc \(n-2=1\)hoặc \(n^2+n-5=1\)

Nếu \(n-2=1\)thì \(n=3\)

Khi đó \(p=1.\left(3^2+3-5\right)=7\)là số nguyên tố (thảo mãn) 

Nếu \(n^2+n-5=1\Leftrightarrow n^2+n=6\Leftrightarrow n\left(n+1\right)\)\(=2.3\Rightarrow n=2\)

Khi đó \(p=\left(2-2\right).1=0\)không là số nguyên tố

Vậy \(n=3\)

Chúc bạn học tốt ( -_- )

Vacija
5 tháng 6 2018 lúc 5:55

bn CTV kia co bit làm đ éo đâu :))

Changhu
Xem chi tiết
Nguyễn Minh Hiển
Xem chi tiết
Minh Triều
Xem chi tiết
Lê Đình Nam
26 tháng 1 2017 lúc 8:30

\(\frac{m}{p}=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{p-1}\)

\(\frac{m}{p}=\left(1+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+....+\left(1+\frac{1}{\left(p-1\right):2}\right)+\left(1+\frac{1}{\left(p-2\right):2}\right)\)

\(\frac{m}{n}=p\left(\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+........+\frac{1}{\left[\left(p-1\right):2\right].\left[\left(p-1\right):2+1\right]}\right)\)

MC:1.2.3....(p-1)

Gọi các thừa số phụ lần lượt là \(k_1;k_2;k_3;.....;k_{p-1}\)

Khi đó: \(\frac{m}{n}=\frac{p.\left(k_1+k_2+k_3+....+k_{\left(p-1\right)}\right)}{1.2.3....\left(p-1\right)}\)

Do p là nguyên tố lớn hơn 2 mà mẫu không chứa thừa số p nên đến khi rút gọn tử số vẫn chứa thừa số nguyên tố p

\(\Rightarrow\)m chia hết cho p (đpcm)

Bùi Xuân Doanh
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2023 lúc 21:16

Với \(n=1\) không thỏa mãn

Với \(n=2\) thỏa mãn

Với \(n>2\): ta có \(2^n-1\) ; \(2^n\) và \(2^n+1\) là 3 số tự nhiên liên tiếp đều lớn hơn 3

\(\Rightarrow\) Trong 3 số phải có một số chia hết cho 3 

Mà \(2^n\) không chia hết cho 3 với mọi n

\(\Rightarrow\) Trong 2 số \(2^n-1\) và \(2^n+1\) phải có 1 số chia hết cho 3

\(\Rightarrow\) Phải có 1 số là hợp số (ktm yêu cầu cả 2 đồng thời là SNT)

\(\Rightarrow n=2\) là số tự nhiên duy nhất thỏa mãn yêu cầu đề bài

ILoveMath
Xem chi tiết
nhung olv
26 tháng 11 2021 lúc 22:09

A) Vì 2013 là số lẻ nên (\(1^{2013}+2^{2013}\)+....\(n^{2013}\)): (1+2+...+n)

Hay( \(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)) :\(\dfrac{n\left(n+1\right)}{2}\)

=>2(\(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)):n(n+1)(đpcm)

B)

Do 1 lẻ , \(2q^2\) chẵn nên p lẻ

p2−1⇔\(2q^2\)(p−1)(p+1)=\(2q^2\)

p lẻ nên p−1 và p+1đều chẵn ⇒(p−1)(p+1)⋮4

\(q^2\):2 =>q:2 =>q=2 

\(q^2\)=2.2\(^2\)+1=9=>q=3

 Chắc đúng vì hôm trước cô mik giải thik v 
❤X༙L༙R༙8❤
26 tháng 11 2021 lúc 22:14

a, Vì 2013 là số lẻ nên (\(^{1^{2013}+2^{2013}+...n^{2013}}\))⋮(1+2+...+n)

=>\(\left(1^{2013}+2^{2013}+...+n^{2013}\right)\)\(\dfrac{n\left(n+1\right)}{2}\)

=>\(2\left(1^{2013}+2^{2013}+...+n^{2003}\right)\)⋮n(n+1)

đpcm