Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quốc Phương
Xem chi tiết
FC TF Gia Tộc và TFBoys...
23 tháng 1 2016 lúc 20:55

 2x^4-9x^3+14x^2-9x+2=0 
vế trái có tổng các hệ số (2-9+14-9+2)=0 nến có 1 nghiêm x=1 
nên phân tích đc nhân tử là (x-1) 
2x^4-9x^3+14x^2-9x+2=0 <=> (x-1)(2x^3-7x^2+7x-2)=0 
<=> x=1 và 2x^3-7x^2+7x-2=0 
PT: 2x^3-7x^2+7x-2=0 cũng có tổng các hệ số (2-7+7-2)=0 nên cũng có 1 nghiệm là 1 => vế trái có thể phân tích đc nhân tử (x-1) 
2x^3-7x^2+7x-2=0 <=> (x-1)(2x^2-5x+2)=0 
<=> x=1 và 2x^2-5x+2=0 
2x^2-5x+2=0 <=> x^2 - (5/2)x + 1 =0 
<=> (x-5/4)^2 - 9/16 = 0 
<=> (x-5/4)^2 - (3/4)^2 = 0

Phạm Trung Kiên
Xem chi tiết
Akai Haruma
29 tháng 1 2020 lúc 15:09

Lời giải:

$2x^4-9x^3+14x^2-9x+2=0$

$\Leftrightarrow 2x^4-2x^3-7x^3+7x^2+7x^2-7x-2x+2=0$

$\Leftrightarrow 2x^3(x-1)-7x^2(x-1)+7x(x-1)-2(x-1)=0$

$\Leftrightarrow (x-1)(2x^3-7x^2+7x-2)=0$

$\Leftrightarrow (x-1)[2(x^3-1)-7x(x-1)]=0$

$\Leftrightarrow (x-1)(x-1)(2x^2+2x+2-7x)=0$

$\Leftrightarrow (x-1)^2(2x^2-5x+2)=0$

$\Leftrightarrow (x-1)^2(2x^2-4x-x+2)=0$

$\Leftrightarrow (x-1)^2[2x(x-2)-(x-2)]=0$

$\Leftrightarrow (x-1)^2(2x-1)(x-2)=0$

\(\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{1}{2}\\ x=2\end{matrix}\right.\)

Khách vãng lai đã xóa
Ha Thi Dinh Trung tam th...
Xem chi tiết
Ha Thi Dinh Trung tam th...
23 tháng 1 2020 lúc 14:37

giúp tôi với

Khách vãng lai đã xóa
Edogawa Conan
23 tháng 1 2020 lúc 14:38

1) 2x4 - 9x3 + 14x2 - 9x + 2 = 0

<=> (2x4 - 4x3) - (5x3 - 10x2) + (4x2 - 8x) - (x - 2) = 0

<=> 2x3(x - 2) - 5x2(x - 2) + 4x(x - 2) - (x - 2) = 0

<=> (2x3 - 5x2 + 4x - 1)(x - 2) = 0

<=> [(2x3 - 2x2) - (3x2 - 3x) + (x - 1)](x - 2) = 0

<=> [2x2(x - 1) - 3x(x - 1) + (x - 1)](x - 2) = 0

<=> (2x2 - 2x - x + 1)(x - 1)(x - 2) = 0

<=> (2x - 1)(x - 1)2(x - 2) = 0

<=> 2x - 1=0

hoặc x - 1 = 0

hoặc x - 2 = 0

<=> x = 1/2

hoặc x = 1

hoặc x = 2

Vậy S = {1/2; 1; 2}

Khách vãng lai đã xóa
Minh Nguyen
23 tháng 1 2020 lúc 14:59

1) \(2x^4-9x^3+14x^2-9x+2=0\)

\(\Leftrightarrow2x^4-2x^3-7x^3+7x^2+7x^2-7x-2x+2=0\)

\(\Leftrightarrow2x^3\left(x-1\right)-7x^2\left(x-1\right)+7x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^3-7x^2+7x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[2\left(x^3-1\right)-7x\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[2\left(x-1\right)\left(x^2+x+1\right)-7x\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(2x^2+2x+2-7x\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(2x^2-5x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(2x^2-x-4x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[x\left(2x-1\right)-2\left(2x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(2x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2=0\)

hoặc \(2x-1=0\)

hoặc \(x-2=0\)

\(\Leftrightarrow\)\(x=1\)hoặc \(x=\frac{1}{2}\)hoặc \(x=2\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;\frac{1}{2};2\right\}\)

2) \(6x^4+25x^3+12x^2-25x+6=0\)

\(\Leftrightarrow6x^4-3x^3+28x^3-14x^2+26x^2-13x-12x+6=0\)

\(\Leftrightarrow3x^3\left(2x-1\right)+14x^2\left(2x-1\right)+13x\left(2x-1\right)-6\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x^3+14x^2+13x-6\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x^3-x^2+15^2-5x+18x-6\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(3x-1\right)+5x\left(3x-1\right)+6\left(3x-1\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-1\right)\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-1\right)\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\)\(2x-1=0\)

hoặc \(3x-1=0\)

hoặc \(x+2=0\)

hoặc \(x+3=0\)

\(\Leftrightarrow\)\(x=\frac{1}{2}\)hoặc \(x=\frac{1}{3}\)hoặc \(x=-2\)hoặc \(x=-3\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{2};\frac{1}{3};-2;-3\right\}\)

3) Ktra lại đề nhé :D

4) \(x^3-3x^2+3x+8=0\)

\(\Leftrightarrow2x^3+2x^2-5x^2-5x+8x+8=0\)

\(\Leftrightarrow2x^2\left(x+1\right)-5x\left(x+1\right)+8\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2-5x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2-5x+8=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(TM\right)\\2\left(x-\frac{5}{4}\right)^2+\frac{39}{8}=0\left(L\right)\end{cases}}\)

Vậy x = -1

5) \(x^4+2x^3+x^2=0\)

\(\Leftrightarrow x^2\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow x^2\left(x+1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;-1\right\}\)

Khách vãng lai đã xóa
Juliet Pek
Xem chi tiết
baoccccc
Xem chi tiết
Nguyễn Việt Hoàng
14 tháng 3 2019 lúc 22:06

\(x^{2007}-9x^{2005}+5x^2-14x-3=0\)

\(\Leftrightarrow x^{2005}(x^{2}-9)+5x^{2}-15x+x-3=0\)

\(\Leftrightarrow x^{2005}(x-3)(x+3)+5x(x-3)+x-3=0\)

\(\Leftrightarrow (x^{2006}+3x^{2005}+5x+1)(x-3)=0\)

Xét đa thức : \(P(x)=x^{2006}+3x^{2005}+5x+1\)

\(P(x)<0\) với \(x \in \{-1;-2;-3 \}\)

\(P(x)>0\) với \(x \ge 0\) hoặc \(x \le -4\)

Vậy \(P(x) \ne 0\) \(\forall x\inℤ\)nên x = 3

Cuong Vu
Xem chi tiết
Bùi Thế Hào
9 tháng 3 2018 lúc 14:49

2x4-9x3+14x2-9x+2=0

<=> 2x4-2x3-7x3+7x2+7x2-7x-2x+2=0

<=> 2x3(x-1)-7x2(x-1)+7x(x-1)-2(x-1)=0

<=> (x-1)(2x3-7x2+7x-2)=0

<=> (x-1)[2x3-2x2-5x2+5x+2x-2]=0

<=> (x-1)[2x2(x-1)-5x(x-1)+2(x-1)]=0

<=> (x-1)2(2x2-5x+2)=0

<=> (x-1)2(2x2-4x-x+2)=0

<=> (x-1)2[(2x(x-2)-(x-2)]=0

<=> (x-1)2(x-2)(2x-1)=0

=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\x-2=0\\2x-1=0\end{cases}}\) <=> \(\hept{\begin{cases}x_1=1\\x_2=2\\x_3=\frac{1}{2}\end{cases}}\)

Nguyên Phạm Hoàng Lê
Xem chi tiết
Nguyễn Thị Thu Hiền
Xem chi tiết
Hoàng Yến
18 tháng 2 2020 lúc 17:04

\(b.6x^4+25x^3+12x^2-25x+6=0\\\Leftrightarrow 6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\\\Leftrightarrow 6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\\\Leftrightarrow \left(6x^3+13x^2-14x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left(6x^3+18x^2-5x^2-15x+x+3\right)\left(x+2\right)=0\\\Leftrightarrow \left[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)\right]\left(x+2\right)=0\\ \Leftrightarrow\left(6x^2-5x+1\right)\left(x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left(6x^2-3x-2x+1\right)\left(x+3\right)\left(x+2\right)=0\\\Leftrightarrow \left[3x\left(2x-1\right)-\left(2x-1\right)\right]\left(x+3\right)\left(x+2\right)=0\\\Leftrightarrow \left(3x-1\right)\left(2x-1\right)\left(x+3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\2x-1=0\\x+3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=\frac{1}{2}\\x=-3\\x=-2\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{\frac{1}{3};\frac{1}{2};-3;-2\right\}\)

Khách vãng lai đã xóa
Hoàng Yến
18 tháng 2 2020 lúc 16:54

\(2x^4-9x^3+14x^2-9x+2=0\\\Leftrightarrow 2x^4-2x^3-7x^3+7x^2+7x^2-7x-2x+2=0\\\Leftrightarrow 2x^3\left(x-1\right)-7x^2\left(x-1\right)+7x\left(x-1\right)-2\left(x-1\right)=0\\\Leftrightarrow \left(2x^3-7x^2+7x-2\right)\left(x-1\right)=0\\\Leftrightarrow \left[2\left(x^3-1\right)-7x\left(x-1\right)\right]\left(x-1\right)=0\\\Leftrightarrow \left(x-1\right)^2\left[2\left(x^2+x+1\right)-7x\right]=0\\\Leftrightarrow \left(2x^2+2x+2-7x\right)\left(x-1\right)^2=0\\\Leftrightarrow \left(2x^2-5x+2\right)\left(x-1\right)^2=0\\\Leftrightarrow \left(2x^2-x-4x+2\right)\left(x-1\right)^2=0\\\Leftrightarrow \left[x\left(2x-1\right)-2\left(2x-1\right)\right]\left(x-1\right)^2=0\\\Leftrightarrow \left(x-2\right)\left(2x-1\right)\left(x-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-1=0\\\left(x-1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\2x=1\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\\x=1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{2;\frac{1}{2};1\right\}\)

Khách vãng lai đã xóa
Zero Two
Xem chi tiết
Nguyễn Huy Tú
26 tháng 4 2021 lúc 20:55

a, \(\left|2x-1\right|-7=0\Leftrightarrow\left|2x-1\right|=7\)

Với \(x\ge\frac{1}{2}\)phương trình có dạng : 

\(2x-1=7\Leftrightarrow x=4\)( tm ) 

Với \(x< \frac{1}{2}\)phương trình có dạng : 

\(-2x+1=7\Leftrightarrow x=-3\)( tm )

Vậy tập nghiệm của phương trình là S = { -3 ; 4 } 

Khách vãng lai đã xóa
Nguyễn Huy Tú
26 tháng 4 2021 lúc 21:00

b, \(\frac{9x^2}{2\left(1-9x^2\right)}=\frac{3x}{6x-2}-\frac{1+9x}{3+9x}\)ĐK : \(x\ne\pm\frac{1}{3}\)

\(\Leftrightarrow-\frac{9x^2}{2\left(3x-1\right)\left(3x+1\right)}=\frac{3x}{2\left(3x-1\right)}-\frac{1+9x}{3\left(3x+1\right)}\)

\(\Leftrightarrow\frac{-27x^2}{6\left(3x-1\right)\left(3x+1\right)}=\frac{9x\left(3x+1\right)}{6\left(3x-1\right)\left(3x+1\right)}-\frac{2\left(1-9x\right)\left(3x+1\right)}{6\left(3x-1\right)\left(3x+1\right)}\)

\(\Leftrightarrow-27x^2=27x^2-9x-2\left(3x-27x^2\right)\)

\(\Leftrightarrow108x^2-15x=0\Leftrightarrow3x\left(36x-5\right)=0\Leftrightarrow x=0;x=\frac{5}{36}\)( tm )

Vậy tập nghiệm của phương trình là S = { 0 ; 5/36 } 

Khách vãng lai đã xóa