Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sakura Linh
Xem chi tiết
Nguyễn Huy Tú
23 tháng 11 2016 lúc 19:10

Giải:

Đặt \(d=UCLN\left(n+2;2n+5\right)\)

Ta có:

\(n+2⋮d\Rightarrow2\left(n+2\right)⋮d\Rightarrow2n+4⋮d\)

\(2n+5⋮d\)

\(\Rightarrow2n+5-2n-4⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=UCLN\left(n+2;2n+5\right)=1\)

\(\Rightarrow n+2\) và 2n + 5 là 2 số nguyên tố cùng nhau

Isolde Moria
23 tháng 11 2016 lúc 18:44

Gọi d là ƯCLN( n+2 ; 2n + 5 )

\(\Rightarrow\begin{cases}n+2⋮d\\2n+5⋮d\end{cases}\)

=> (2n+5) - 2(n+2) ⋮ d

=> 1 ⋮ d

=> d = 1

Vậy ...............

Lê kim Ánh
Xem chi tiết
Phung Ngoc Quoc Bao
Xem chi tiết
Phan Thi Phuong Anh
Xem chi tiết
Phương Nhung Ngô Nguyễn
Xem chi tiết
Donald
17 tháng 11 2019 lúc 19:26

gọi d là ƯC(2n + 3; 3n + 4)

=> 2n + 3 ⋮ d và 3n + 4 ⋮ d

=> 3(2n + 3) ⋮ d và 2(3n + 4) ⋮ d

=> 6n + 9 ⋮ d và 6n + 8 ⋮ d

=> 6n + 9 - 6n - 8 ⋮ d

=> 1 ⋮ d 

=> d = + 1

=> 2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau

Khách vãng lai đã xóa
Phương 0ke
17 tháng 11 2019 lúc 19:30

Gọi UCLN (2n+3;3n+4) = d

=> 2n+3 chia hết cho d

=> 3n+4 chia hết cho d

=> 2n+3.3+3.3 chia hết cho d

=> 3n.2+4.2 chia hết cho d

=> 6n+9-6n+8 chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy ...

Khách vãng lai đã xóa
 ๛๖ۣۜMĭη²ƙ⁸࿐
17 tháng 11 2019 lúc 19:30

2n + 3 và 3n + 4

Gọi UCLN(2n+3;3n+4) = d ( d Thuộc N*)

=> 2n+3 Chia hết cho d => 3.( 2n + 3 ) Chia hết cho d = 6n + 9 Chia hết cho d (1)

     3n+4 Chia hết cho d => 2.( 3n + 4 ) Chia hết cho d = 6n + 8 Chia hết cho d (2)

từ  (1) và (2)

=> [ ( 6n + 9 ) - ( 6n + 8 ) ] Chia hết cho d

<=>                1          Chia hết cho d

Mà d Thuộc N*

=> d = 1

Vậy 2n + 3 và 3n + 4  là 2 số nguyên tố cùng nhau

Khách vãng lai đã xóa
Nguyễn Hà Phong
Xem chi tiết
Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Nguyễn Thi  An Na
Xem chi tiết
shitbo
20 tháng 12 2018 lúc 20:29

Gọi:

d=UCLN(n,n-1)

Ta có: n chia hết cho d

n-1 chia hết cho d

=> n-(n-1) chia hết cho d

=> 1 chia hết cho d=> d=1

Vậy: n và n-1 ntcn 

b) gọi như vậy ta có:

7(2n+1)-14n+6 chia hết cho d

=> 1 chia hết cho d=>d=1

Vậy 2n+1 và 14n+6 ntcn

Nguyễn Hà Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2023 lúc 13:41

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)