Cho tam giác ABC, tia phân giác BD, BD=2, DC=4. Đường trung trực của AC cắt BC tại K. Tính KD
Cho tam giác ABC (AB<AC), đường phân giác AD. Đường trung trực của AD cắt BC tại K. Cho BD=2cm, DC = 4cm. Tính KD
Cho tam giác ABC ( AB < AC ) đường phân giác AD. Đường trung trực của AD cắt BC ở K.
a) cm tam giac KAB đồng dạng với tam giác KCA
b) tính KD biết BD =2cm , DC = 4cm
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. Kẻ DH vuông BC tại H. Cminh
a)tam giác BAD=tam giác BHD
b)BD là đường trung trực của AH
c)Kẻ DH cắt AB tại E. Cminh BC=BE
d)Cminh BD vuông EC
e)Cminh AD<DC
a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(Cạnh huyền-góc nhọn)
b) Ta có: ΔBAD=ΔBHD(cmt)
nên BA=BH(hai cạnh tương ứng) và DA=DH(Hai cạnh tương ứng)
Ta có: BA=BH(cmt)
nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DA=DH(cmt)
nên D nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH(đpcm)
c) Xét ΔADE vuông tại A và ΔHDC vuông tại H có
DA=DH(cmt)
\(\widehat{ADE}=\widehat{HDC}\)(hai góc đối đỉnh)
Do đó: ΔADE=ΔHDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AE=HC(Hai cạnh tương ứng)
Ta có: BA+AE=BE(A nằm giữa B và E)
BH+HC=BC(H nằm giữa B và C)
mà BA=BH(cmt)
và AE=HC(cmt)
nên BE=BC(đpcm)
d) Ta có: ΔADE=ΔHDC(cmt)
nên DE=DC(Hai cạnh tương ứng)
Ta có: BE=BC(cmt)
nên B nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: DE=DC(cmt)
nên D nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (3) và (4) suy ra BD là đường trung trực của EC
hay BD\(\perp\)EC(đpcm)
e) Ta có: DA=DH(cmt)
mà DH<DC(ΔDHC vuông tại H)
nên DA<DC(đpcm)
a) Xét tam giác BAD và tam giác BHD có:
BD chung (gt)
ABD= HBD (gt)
A = H =90o (gt)
=> BAD= BHD(c.h-g.n)
Trong Tam giác ABC , đường phân giác AD chia cạnh đối diện thành các đoạn thẳng BD = 2cm, DC = 4cm. Đường trung trực của AD cắt đườngthẳng BC tại K. Tính độ dài KD.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>BA=BH và DA=DH
=>BD là trung trực của AH
c: HD=DA(cmt)
DA<DK(ΔDAK vuông tại A)
=>HD<DK
4/. Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm
a/ Tính BC
b/ Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh
DBC = DCB.
c/Trên tia BD lấy điểm E sao cho DE = DC, Cm: ∆ BEC vuông => DF là phân giác góc ADE.
d/ Chứng minh: BE FC
Cho tam giác ABC vuông tại A, AB = 6 cm, AC = 8cm. Gọi BD là đường phân giác của tam giác ABC. a)Tính các độ dài DA, DC. b) Tia phân giác của góc C cắt BD tại I. Gọi M là trung điểm của BC. Chứng minh BIM = 90°.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=36+64=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC có BD là phân giác
nên \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)
=>\(\dfrac{DA}{6}=\dfrac{DC}{10}\)
=>\(\dfrac{DA}{3}=\dfrac{DC}{5}\)
mà DA+DC=AC=8cm(D nằm giữa A và C)
nên \(\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{8}{8}=1\)
=>\(DA=3\cdot1=3cm;DC=5\cdot1=5cm\)
b: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=MB=MC=\dfrac{BC}{2}=5\left(cm\right)\)
mà DC=5cm
nên CM=CD
Xét ΔCDI và ΔCMI có
CD=CM
\(\widehat{DCI}=\widehat{MCI}\)
CI chung
Do đó: ΔCDI=ΔCMI
=>\(\widehat{CID}=\widehat{CIM}\) và \(\widehat{IMC}=\widehat{IDC}\)(3)
Ta có: \(\widehat{IDC}=\widehat{BAD}+\widehat{ABD}\)(góc IDC là góc ngoài tại đỉnh D của ΔABD)
nên \(\widehat{IDC}=\widehat{BAD}+\widehat{ABD}=90^0+\widehat{ABD}\)(2)
Xét ΔBIM có \(\widehat{IMC}\) là góc ngoài tại đỉnh M
nên \(\widehat{IMC}=\widehat{MIB}+\widehat{MBI}\left(1\right)\)
Từ (1),(2),(3) suy ra \(\widehat{MIB}+\widehat{MBI}=90^0+\widehat{ABD}\)
mà \(\widehat{MBI}=\widehat{ABD}\)
nên \(\widehat{MIB}=90^0\)
Cho tam giác ABC vuông tại A có AB= 6cm BC= 10cm
a, tính độ dài AC và so sánh các góc của tam giác ABC
b, trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD chứng minh tam giác BCD cân
c, gọi K là trung điểm của cạnh BC đường thẳng DK cắt AC tại M .tính MC
d) đường trung trực D của đường thẳng AC cắt đường thẳng DC tại Q chứng minh 3 điểm B M Q thẳng hàng