a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>BA=BH và DA=DH
=>BD là trung trực của AH
c: HD=DA(cmt)
DA<DK(ΔDAK vuông tại A)
=>HD<DK
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>BA=BH và DA=DH
=>BD là trung trực của AH
c: HD=DA(cmt)
DA<DK(ΔDAK vuông tại A)
=>HD<DK
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a, Chứng minh: AD = HD
b, So sánh độ dài cạnh AD và DC
c, Chứng minh tam giác KBC là tam giác cân
B18
Cho tam giác ABC vuông tại A, AH là đường cao. Vẽ BD là đường phân giác của tam giác ABC cắt AH tại K. Qua C kẻ đường thẳng vuông góc BD tại E. Kéo dài đường thẳng BA và CE cắt nhau tại M. MD cắt BC tại I. Chứng minh EB là tia phân giác IEA.
Cho tam giác ABC vuông tại A, đường phân giác BD ( D thuộc AC ). Từ D kẻ DH vuông góc với BC.
a, Tam giác BAH là tam giác gì? Vì Sao?
b, So sánh AD và DC
c, Chứng minh: DB là phân giác của góc ADH
d, Gọi K là giao điểm của AB và DH. I là trung điểm của KC. Chứng minh: 3 điểm B; I; D thẳng hàng.
Cho tam giác ABC vuông tại A, BD là phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE
a/ Chứng minh DE vuông góc với BE
b/ Chứng minh BD là đường trung trực của AE
c/ Kẻ AH vuông góc với BC. So sánh EH và HC
Cho Δ ABC vuông tại A, đường phân giác BE. Kẻ EH vuông góc với
BC (H ϵ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:
a) Δ ABE = ΔHBE .
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC. d) AE < EC
Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.
a) Chứng minh tam giác ABK cân tại B
b) Chứng minh DK vuông góc BC
c) Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HAC
d) Gọi I là giao điểm của AH và BD. Chứng minh IK//AC
Bài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).
a) So sánh góc ABC và góc ACB. Tính góc ABH.
b) Vẽ AD là phân giác của góc A (D thuộc BC), vẽ BI vuông góc AD tại I. Chứng minh tam giác AIB=tam giác BHA
c) Tia BI cắt AC ở E. Chứng minh tam giác ABE đều
Bài 5: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.
a) Biết AC =8cm, AB=6cm. Tính BC?
b) Tam giác ABK là tam giác gì?
c) Chứng minh DK vuông góc BC
d) Kẻ AH vuông góc BC. Chứng minh Ak là tia phân giác của góc HAC.
Bài 6: Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm
a) Tam giác ABC là tam giác gì
b) Vẽ BD là phân giác góc B. Trên cạnh BC lấy điểm E sao cho AB=AE. Chứng minh AD=DE
c) Chứng minh AE vuông góc BD
d) Kéo dài BA cắt ED tại F. Chứng minh AE//FC
Bài 7: Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H.
a) Chứng minh tam giác ABH=tam giácACH
b) Vẽ trung tuyến BM.Gọi G là giao điểm của AH và BM. Chứng minh G là trọng tâm của tam giac ABC
c) Cho AB=30cm, BH=18cm.Tính AH ,AG
d) Từ H kẻ HD // với AC (D thuộc AB) .Chứng minh ba điểm C,G,D thẳng hàng .
Bài 8: Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm
a)Tính BC
b) Gọi M là trung điểm của BC. Kẻ BH vuông góc AM tại H, CK vuông góc AM tại K. Chứng minh tam giác BHM=tam giac CKM
c)Kẻ HI vuông góc BC tại I .So sánh HI và MK
d) So sánh BH+ BK với BC
Cho tam giác ABC với độ dài 3 cạnh AB = 3cm, BC = 5cm, AC = 4cm.
a) Chứng minh Δ ABC vuông
b) Trên BC lấy điểm D sao cho BA = BD. Từ D vẽ Dx ⊥ BC, Dx cắt AC tại H
Chứng minh Δ HBA = Δ HBD, suy ra BH là tia phân giác của ABC
c) Tia Dx cắt AB tại I. Chứng minh IH + IB > HD + BH
d) Gọi M là trung điểm IC. Chứng minh ba điểm B, H, M thẳng hàng
cho tam giác ABCvuông tại A , đường cao AH .
a) chứng minh Δ ABC đòng dang với ΔHAC
b) chứng minh AC^2 = CH . BC ,
c) trên tia đối của AB lấy CD sao cho CD>AB , vẽ AK vuông góc với DC tại K , gọi M là giao điểm của DH và KB . chứng minh Δ DMK đòng dạng với Δ BMH
Cho tam giác ABC nhọn, kẻ đường cao AH (H thuộc cạnh BC). Tia phân giác của góc ABH cắt AH tại I. Qua A kẻ đường thẳng vuông góc với AB, cắt tia BI tại K. Kẻ KD vuông góc với BC (D thuộc BC). a) Chứng minh rằng: tam giác AKD cân. b) Chứng minh rằng: BK vuông gióc với AD . Từ đó suy ra I là trực tâm của tam giác ABD. c) Trên tia đối của tia HA lấy điểm E sao cho HE = HI. Chứng minh rằng AKDE là hình thang cân. d) Nếu biết rằng ADE 3ADK , tính số đo ABC.