Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Hoa Vũ
Xem chi tiết
pham thuy dung
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 10 2021 lúc 20:04

\(a,a^2\left(a-b\right)+ab\left(a-c\right)=a\left(a+b\right)\left(a-c\right)\\ c,=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\\ b,=\left(x-5\right)^2-9y^2=\left(x-5-3y\right)\left(x-5+3y\right)\\ d,=4\left(x^2-9x+14\right)=4\left(x-7\right)\left(x-2\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 4 2019 lúc 2:48

Ta có

a 4 + a 3 + a 3 b + a 2 b = a 4 + a 3 + a 3 b + a 2 b = a 3 a + 1 + a 2 b a + 1 = a + 1 a 3 + a 2 b = a + 1 a 2 a + b = a 2 a + b a + 1

Đáp án cần chọn là: A

Cíuuuuuuuuuu
Xem chi tiết
Nguyễn Hoàng Minh
4 tháng 8 2021 lúc 10:47

a) \(45a^3-30a^2+5a-500=5\left(9a^3-6a^2+a-100\right)\)

b) \(a^2b-49b+14b^2-b^3=b\left(a^2-b^2+14b-49\right)=b\left[a^2-\left(b-7\right)^2\right]=b\left(a-b+7\right)\left(a+b-7\right)\)

Tick hộ tui nha 😘

Cíuuuuuuuuuu
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
3 tháng 8 2021 lúc 15:01

a) $7a^3 - 28a^2 + 28a$

$ = 7a.(a^2 - 4a+4)$

$ = 7a.(a-2)^2$

d) $x^4 + 4$

$ = (x^4+4x^2+4) - 4x^2$

$ = (x^2+2)^2 - (2x)^2$

$ = (x^2+2x+2)(x^2-2x+2)$

Tạ Uyên
Xem chi tiết
Trên con đường thành côn...
12 tháng 2 2022 lúc 19:02

Do \(0\le a,b,c\le1\)

nên\(\left\{{}\begin{matrix}\left(a^2-1\right)\left(b-1\right)\ge0\\\left(b^2-1\right)\left(c-1\right)\ge0\\\left(c^2-1\right)\left(a-1\right)\ge0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b-b-a^2+1\ge0\\b^2c-c-b^2+1\ge0\\c^2a-a-c^2+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b\ge a^2+b-1\\b^2c\ge b^2+c-1\\c^2a\ge c^2+a-1\end{matrix}\right.\)

Ta cũng có:

\(2\left(a^3+b^3+c^3\right)\le a^2+b+b^2+c+c^2+a\)

Do đó \(T=2\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)\)

\(\le a^2+b+b^2+c+c^2+a\)\(-\left(a^2+b-1+b^2+c-1+c^2+a-1\right)\)

\(=3\)

Vậy GTLN của T=3, đạt được chẳng hạn khi \(a=1;b=0;c=1\)

 

Tạ Uyên
12 tháng 2 2022 lúc 18:14

giúp mình câu hỏi này với ah.

quang dũng lê
Xem chi tiết
Akai Haruma
26 tháng 2 2022 lúc 23:26

Lời giải:
Do $a,b,c\in [0;1]$ nên:

$a^2(1-b)\leq 0$

$b^2(1-c)\leq 0$

$c^2(1-a)\leq 0$

Cộng theo vế suy ra: $a^2+b^2+c^2\leq a^2b+b^2c+c^2a$ 

Ta có đpcm.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2018 lúc 3:03

Trương Cẩm Nhung
Xem chi tiết
Anh Mai
25 tháng 6 2015 lúc 16:48

 Thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có : 

Biến đổi vế trái thành: 

a^3+b^3+c^3-3abc 

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc 

<=>[(a+b)^3 +c^3] -3ab.(a+b+c) 

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c) 

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab 

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)

sdf
28 tháng 6 2017 lúc 13:55

boc vai

Cíuuuuuuuuuu
Xem chi tiết