Cho các số a và b không âm.
CMR: (a + b)(ab + 1) ≥ 4ab
Cho a,b không âm. CMR: (a+b)(ab+1)>= 4ab
cho K=ab+4ab -4bc với a,b,c là các số không âm thỏa mãn a+b+2c=1
a) Chứng minh K ≥ - \(\dfrac{1}{2}\)
b) Tìm giá trị lớn nhất của K
cmr: 4a2 b2 + 4ab + 1 luôn không âm với mọi số thực a; b
4a2+b2+4ab+1
=(2a+b)2+1
Do\(\left(2a+b\right)^2\ge0\Rightarrow\left(2a+b\right)^2+1>0\)
=>(2a+b)2+1 luôn không âm với mọi số thực a;b
hay 4a2+b2+4ab+1 luôn không âm với mọi số thực a;b(ĐPCM)
cho a,b là các số không âm. CMR: (1+a+b)/2>_(1+a+b+ab)/2+a+b
Với a, b, c là các số thực không âm thỏa mãn a+b+c=1. Tìm GTLN của biểu thức P = 4ab+2bc+ca
\(1-c=a+b\ge2\sqrt{ab}\Rightarrow4ab\le\left(1-c\right)^2\)
\(2bc+ca\le2bc+2ca=2c\left(a+b\right)=2c\left(1-c\right)\)
Từ đó ta có:
\(P\le\left(1-c\right)^2+2c\left(1-c\right)=1-c^2\le1\)
\(P_{max}=1\) khi \(\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\)
Cho a,b,c là các số không âm .CMR:
\(\frac{1+a+b}{2}\ge\frac{1+a+b+ab}{2+a+b}\)
Mẫu không âm+ quy đồng
\(\frac{1+a+b}{2}\ge\frac{1+a+b+ab}{2+a+b}\)(1)
<=> \(2+3\left(a+b\right)+\left(a+b\right)^2\ge2+2a+2b+2ab\)
<=> \(a^2+b^2+a+b\ge0\) luôn đúng vì a; b không âm
Do đó (1) đúng
Dấu "=" xảy ra <=> a = b = 0
cho 2 số ko âm a,b
CMR: \(a+4b\ge\frac{16ab}{1+4ab}\)
Với a,b không âm,áp dụng CAUCHY 2 lần ta có
\(a+4b\ge2\sqrt{4ab}=4\sqrt{ab}\)(1)
\(1+4ab\ge2\sqrt{4ab}=4\sqrt{ab}\)(2)
Nhân 2 vế của (1) và (2) ta có:\(\left(a+4b\right)\left(1+4ab\right)\ge16ab\)
Lại chia cả 2 vế cho (1+4ab) ta được điều cần cminh...
các bạn ơi **** mình cái mình đang cần khôi phục ****
Cho a,b là các số hữu tỉ thỏa mãn \(a^3+b^3\)=4ab. Cmr 4-ab là bình phương của một số hữu tỉ
\(a^3+b^3=4ab\)
\(\Rightarrow a^3=4ab-b^3\)
\(\Rightarrow a=\dfrac{4ab-b^3}{a^2}\)
\(4-ab=4-\dfrac{4ab-b^3}{a^2}.b=4-\dfrac{4ab^2-b^4}{a^2}=\dfrac{4a^2-4ab^2+b^4}{a^2}=\dfrac{\left(2a-b^2\right)^2}{a^2}=\left(\dfrac{2a-b^2}{a}\right)^2\)
1.Xét 2 số thực không âm a,b thỏa mãn a+b≤6. Tìm giá trị lớn nhất của A=a2b(4-a-b)
2. Cho các số a,b,c∈R+ thỏa mãn a+b+c=3.CMR : a+ab+2abc≤\(\dfrac{9}{2}\)
3. Cho các số a,b ∈R+ phân biệt. CMR: (x+y)\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)+\(\dfrac{16}{\left(x-y\right)^2}\)≥12
1.
- Với \(a+b\ge4\Rightarrow A\le0\)
- Với \(a+b< 4\Rightarrow4-a-b>0\)
\(\Rightarrow A=\dfrac{a}{2}.\dfrac{a}{2}.b.\left(4-a-b\right)\)
\(\Rightarrow A\le\dfrac{1}{64}\left(\dfrac{a}{2}+\dfrac{a}{2}+b+4-a-b\right)^4=4\)
\(A_{max}=4\) khi \(\left(a;b\right)=\left(2;1\right)\)
2.
\(P=a+\dfrac{1}{2}.a.2b\left(1+2c\right)\le a+\dfrac{a}{8}\left(2b+1+2c\right)^2\)
\(P\le a+\dfrac{a}{8}\left(7-2a\right)^2=\dfrac{1}{8}\left(4a^3-28a^2+57a-36\right)+\dfrac{9}{2}\)
\(P\le\dfrac{1}{8}\left(a-4\right)\left(2a-3\right)^2+\dfrac{9}{2}\le\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};1;\dfrac{1}{2}\right)\)
Câu 3 bạn xem lại đề, mình có thể chắc chắn với bạn là đề sai
Ví dụ bạn cho \(x=98,y=100\) thì vế trái chỉ lớn hơn 8 một chút
Đề đúng phải là: \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{16xy}{\left(x-y\right)^2}\ge12\)
Nếu câu 3 đề là \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{16xy}{\left(x-y\right)^2}\ge12\)
Ta có:
\(VT=2+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{16xy}{\left(x-y\right)^2}=\dfrac{x^2+y^2}{xy}+\dfrac{16xy}{\left(x-y\right)^2}+2\)
\(VT=\dfrac{x^2+y^2-2xy+2xy}{xy}+\dfrac{16xy}{\left(x-y\right)^2}+2\)
\(VT=\dfrac{\left(x-y\right)^2}{xy}+\dfrac{16xy}{\left(x-y\right)^2}+4\ge2\sqrt{\dfrac{16xy\left(x-y\right)^2}{xy\left(x-y\right)^2}}+4=12\)
Với a; b không âm, chứng minh \(a+b\ge\frac{4ab}{1+ab}\)
\(\text{bđt}\Leftrightarrow\left(a+b\right)\left(1+ab\right)\ge4ab\)
Theo bất đẳng thức Côsi: \(a+b\ge2\sqrt{ab};\text{ }1+ab\ge2\sqrt{ab}\)
\(\Rightarrow\left(a+b\right)\left(1+ab\right)\ge2\sqrt{ab}.2\sqrt{ab}=4ab\text{ (đpcm).}\)
Đẳng thức xảy ra khi \(a=b;\text{ }ab=1\Leftrightarrow a=b=1\)